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Abstract 

Shared Autonomous Vehicles (SAVs) are expected to have a transformative role in future transportation systems, 
by reducing vehicle ownership, helping in alleviating congestion, improving accessibility and traffic safety, and chang-
ing travel behavior and urban infrastructure. The potential introduction of SAVs in transportation systems has trig-
gered the need of exploiting suitable tools for designing and planning SAV operations and services and assessing 
their impacts. An explicit category of such tools are agent-based models (ABMs), whose advantage in efficiently 
representing transportation systems with a fine level of detail, has allowed them to gain importance in modeling 
SAVs. This paper systematically reviews and organizes the current state-of-the-art on ABMs dealing with SAVs. The 
review is two-fold: first, the methodological aspects of exploiting ABMs in the context of SAV services and operations 
are analyzed and second, ABM-based findings on the anticipated impacts of SAVs to traffic, travel behavior, land uses, 
the environment and so on, are presented and discussed. The paper concludes with recommendations for future 
research on SAVs and other, potential ABM applications for that purpose.
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1 Introduction
The introduction of AVs will become a challenge in the 
coming years. Given the rapid technological advances in 
autonomous driving, the question is no longer how, but 
when AVs will be introduced for full commercial use [9]. 
It is claimed that 75% of vehicles will be autonomous by 
2040, while conservative reports suggest that this will 
be the case by 2060 [76]. AVs are likely to have signifi-
cant impacts on trip patterns, traffic, and transportation 
operations [76]. Indeed, if AVs dominate, congestion is 
expected to worsen [45, 96], urban sprawl will be encour-
aged [31, 118], and the culture of “automobility” will be 
maintained [92].

On the contrary, the option of using AVs in the context of 
shared services (Shared Autonomous Vehicles – SAVs) is a 
case of promoting sustainable mobility, as SAVs are envis-
aged to help reduce traffic congestion [32, 72], limit the need 
for parking, and free more public space for other activities 
[55]. Furthermore, since most traffic accidents are attributed 
to human behavior [56, 97], SAVs will have a positive impact 
on road safety [6, 103]. What is more, SAVs will compete 
with conventional, taxi-type and ridesharing services [10, 
32], thus redressing the way transport providers operate in 
an urban environment. It is therefore evident that the devel-
opment of suitable methodological tools to study and assess 
that impact is essential for the efficient planning and design 
of future transportation systems. Indeed, emerging technol-
ogies and new modes, (such as SAVs, Mobility-as-a-Service 
(MaaS) and so on), set new challenges for transportation 
planning, as they create the need to investigate travel pat-
terns at a more refined, microscopic scale [62].

Agent-based models (ABMs) can replicate transpor-
tation systems at a fine-granular level and as such, they 
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are widely used for modeling SAV systems. ABMs are 
dynamic simulation processes that converge after a series 
of iterations; they consist of agents, the environment, and 
rules [62, 133]. Agents are the actors in a system (either 
travelers or vehicles), the environment is the place where 
agents act and/or interact (the road network, land uses, 
and transportation services), and rules describe the 
behavior and interaction of agents. Since ABMs repre-
sent travel behavior at a highly disaggregated level, it is 
possible to analyze the effects of transport policies on 
travel behavior and traffic in detail [66]. Given this inher-
ent advantage, the research community has adopted such 
models to study the role, behavior, and impact of SAV 
systems.

Considering the extensive use of ABMs in SAV-related 
studies, this paper systematically reviews and organ-
izes the literature on agent-based modeling of SAVs. The 
paper goes beyond the previously published state-of-the-
art reviews on AVs [60, 73, 93] and critically analyzes and 
assesses the application of ABMs and their attributes, 
in the case of SAVs. Also, this paper provides a system-
atic analysis of the impacts of SAVs, derived through the 
application of ABMs. This allows to depict the suitabil-
ity of ABMs in modeling SAV services and operations 
and to shed light on the impacts of SAVs on the urban 
environment.

The remainder of the paper is organized as follows: The 
second section addresses the methodological framework 
used to conduct the review. The third section explores 
various aspects of agent-based modeling in SAV related 
studies, and the fourth section offers a discussion of 
the findings and recommendations for future research. 
Finally, the conclusions and contribution of the paper are 
presented.

2  Methodology
A systematic literature review refers to the process of 
systematically finding and compiling all available infor-
mation on an effect or topic area [26],it can be briefly 
described as a research method for identifying and 
critically appraising relevant research [18] and collect-
ing and analyzing data from that research [75]. The 
research themes considered in the context of the review, 
are referred to as primary studies, while the review itself 
is a secondary study. This method is an acceptable way 
to synthesize research findings and show evidence at 
a meta-level [115], and it is therefore sufficient for the 
purpose of identifying critical concepts and questions 
on the topic reviewed. A systematic literature review 
exploits qualitative approaches developed to assess the 
quality and strength of findings from different types of 
studies and to compare these findings [37]. In particu-
lar, the processes of systematic literature review may 

differ depending on the scope and objectives of individ-
ual studies.

In this paper, a systematic review is used to gain a 
thorough understanding of ABMs and their use in 
the context of SAVs. various trusted databases such 
as Google Scholar, Web of Science, ScienceDirect, 
SPRINGER LINK, TRID, IEEE Xplore, Taylor and Fran-
cis, SAGE Publishing, etc. are exploited for finding rel-
evant peer-reviewed articles (journals or conference 
proceedings) since 2013, using keywords that appear in 
the title, abstract, and body of the articles. Three cat-
egories of search terms were used, either separately or 
in various combinations: (1) agent, agent-based mod-
eling, and agent-based simulation; (2) autonomous vehi-
cles (AVs), autonomous taxi, autonomous mobility on 
demand (AMoD), shared autonomous vehicles (SAVs), 
and shared autonomous electric vehicles (SAEVs); (3) 
impact(s), implication, and effect. These terms were 
adapted to the specific structure and requirements of 
each database. Duplicate and irrelevant papers were 
ignored, and references within identified papers were 
carefully reviewed. Although some of the articles found 
were not peer-reviewed (gray literature), such as some 
pioneering scientific reports, they are still important for 
broad understanding interests in this field. Τo ensure the 
high quality of the review, the articles meet the follow-
ing criteria: (1) they should be written in English; (2) they 
should use agent-based modeling (ABM) or agent-based 
simulation as analysis tools; and (3) they should include 
research on shared autonomous vehicles (SAVs). The 
final review pool consists of 98 scientific papers.

3  Agent based modeling in SAVs research
For the purposes of this review, three main aspects of 
ABM applications in SAVs are identified: conceptual, 
methodological, and impacts. The conceptual aspect 
refers to specific research questions on SAVs that ABM 
applications attempt to answer, and especially those 
related to the design, planning, and evaluation of SAVs 
services. The methodological aspect includes the frame-
work, attributes, and use of ABMs in SAV related studies; 
the review revealed two broad categories for ABM appli-
cations in the context of SAVs: (a) studies focusing on the 
planning/design of SAVs systems and services, and (b) 
work analyzing the potential impact of SAVs on transport 
supply, mobility, the environment, and so on. Figure  1 
illustrates the categorization of impacts related to ABM 
application in SAVs:

3.1  ABMs in the planning and design of SAV systems
Given the potential of SAVs in future transportation 
systems, the first category covers all aspects of SAV ser-
vice development using ABMs, including planning, their 
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application as first/ last mile solutions, taxi and rideshar-
ing services, pricing, charging infrastructures and user 
behavior analysis.

3.1.1  Designing SAVs services
Several studies have addressed the design and planning 
of SAV services using ABMs, with focus on fleet sizing, 
costing, vehicle location and parking decisions. In this 
context, Fagnant and Kockelman [32] estimated fleet 
size requirements and assessed vehicle location strate-
gies for a SAV service in Austin, TX. Their subsequent 
work delved into the effects of low SAV market penetra-
tion within the same city, simulating a fleet’s operational 
dynamics Fagnant et  al. [33]. They later expanded their 
research by considering dynamic ridesharing in SAV 
operations [34]. Building on these studies, Chen et  al. 
[21] explored the management of a fleet of SAVs using a 
regional ABM, for assessing different vehicle ranges and 
charging infrastructures.

A study by Bösch et  al. [16] extended the ABM 
platform MATSim (see Horni et  al. [52] for further 
details on MATSim) to estimate the required fleet of 
SAVs needed for a SAV service in Zurich, Switzerland. 
Another ABM multiscale platform, SimMobility (see 
Adnan et  al., [1] for further details on SimMobility) 
was used by Marczuk et  al. [90] to investigate inter-
play of land-use, transportation, and communications, 
in the context of planning an Autonomous Mobil-
ity on Demand (AMoD) service in Singapore. Heilig 
et al., [47] used a microscopic travel demand model to 

simulate mode choice behavior and calculate fleet size 
needs for an AMoD service when private vehicles are 
not available, using the Stuttgart region as a case study. 
In the same direction, Dia & Javanshour [30] also pro-
posed an AMoD service for Melbourne, Australia, and 
used the ABM platform Commuter (see Liyanage and 
Dia [80] for further details on Commuter) for assessing 
fleet size and parking requirements. Extending previ-
ous studies, Loeb & Kockelman [82] evaluated the fleet 
performance and costs of a SAV service in Austin, TX, 
identifying key profitability and customer satisfac-
tion factors. Zhou et al. [140] introduced a collabora-
tive model integrating park-and-ride facilities, public 
transportation, and SAVs in Nagoya, Japan, leveraging 
ABM insights. Concurrently, Ben-Dor et al. [12] eval-
uated the feasibility of ridesharing with SAVs in Tel-
Aviv, Israel, using MATSim. Finally, Wang et al., [127] 
employed the ABM platform AnyLogic (see more in 
Borshchev [15], to examine the impact on travel and 
energy consumption by strategically formulating SAV 
platoons.

3.1.2  First/last mile transportation
Some studies have explored the role of SAVs in serv-
ing First/Last mile trips; In this context, Scheltes & De 
Almeida Coreira [109] utilized an ABM to design an 
Automated Last-Mile Transport system (ALMT), in 
Delft, Netherlands for connecting the city’s train sta-
tion and the university campus. Shen et  al., [111] tack-
led the first/last mile problem to and from Mass Rapid 

Fig. 1 Investigated SAV impacts by ABMs
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Transit stations in Singapore, by integrating a SAVs ser-
vice and public transport. Using an ABM framework, 
they assessed the potential replacement of low-demand 
bus routes with such a service. In Sejong, Korea, Kim 
et  al., [67, 68] examined the viability of an autonomous 
minibus service using the MATSim simulation frame-
work. Concurrently, Gurumurthy et al., [42] investigated 
the potential of SAVs as a collective distribution mecha-
nism in Austin, TX, highlighting the versatility of SAVs in 
enhancing urban mobility and addressing specific trans-
portation challenges.

3.1.3  Planning Autonomous Taxi (AT) services
Autonomous taxi services, a specific subset of Shared 
Autonomous Vehicles (SAVs), have attracted considera-
ble attention in academic research. Bischoff & Maciejew-
ski [14] were the first to simulate a citywide replacement 
of private vehicles by autonomous taxi (AT) fleets in Ber-
lin, Germany, using the MATSim simulation platform. 
Concurrently, Hörl et  al. [50] exploited MATSim for 
simulating autonomous taxis in an integrated population 
and network-based transportation environment, which 
considered dynamic demand. Llorca et  al. [81] used the 
same platform to simulate a fleet of autonomous taxis for 
partial substitution of transport demand in Munich, Ger-
many. ABMs were also exploited by Martinez & Viegas 
[91] for evaluating different autonomous taxi services, in 
Lisbon, Portugal. Merlin [94] and Lu et al., [87] explored 
the potential of automated taxis in Ann Arbor, MI, in the 
context of either complementing public transport or the 
replacement of private vehicles. Other ABM applications 
planning for autonomous taxi services were presented by 
Hörl [48], Jäger et al., [57], Kim et al., [67, 68], Alisoltani 
et al., [5], and Chouaki & Puchinger [22].

3.1.4  Dynamic ride sharing
SAVs can play a transformative role in the ride-sharing 
ecosystem, fundamentally reshaping how ride-sharing 
services operate and are consumed. Exploiting ABMs, 
Zhang et  al., [138] simulated the performance and esti-
mate the likely benefits of a SAV system with dynamic 
ridesharing, and Lokhandwala & Cai [84] investigated the 
benefits of dynamic ridesharing in AT services in New 
York City, ΝΥ compared to traditional taxi services. Later, 
Wang et al. [124] applied AnyLogic to simulate dynamic 
ridesharing systems with both station-to-station and 
door-to-door services. Hörl et  al., [51] exploited MAT-
Sim and its dynamic vehicle routing extension to simulate 
different operational strategies for controlling an auto-
mated mobility-on-demand system with sequential vehi-
cle sharing. In a series of studies, Gurumurthy et al., [41] 
used MATSim to simulate travel behavior in Austin, TX, 
in the presence of private and shared AVs, with dynamic 

ridesharing and advanced road pricing policies. Sub-
sequently, Gurumurthy et  al., [40] used POLARIS (see 
further in Auld et  al., [7] to assess dynamic ridesharing 
choices of AVs with geofencing in the Chicago region, IL, 
and Gurumurthy & Kockelman [39] studied the effects of 
pick-up and drop-off points on dynamic ridesharing rates 
in Bloomington, IL.

3.1.5  Costs and pricing of SAV services
Service costs and pricing of SAV services are critical 
for assessing their potential introduction. Using Austin, 
TX as a testbed and ABMs, Chen et al., [21] measured 
the impact of fare structures on the market potential of 
SAVs, Liu et al., [79] explored the relationship between 
the level of SAV fares and their impact on modal split 
of private trips, and Simoni et  al., [113] examined the 
impact of different congestion pricing and tolling strate-
gies. Bösch et  al., [17] scrutinized policy combinations 
for SAV services in Zug, Switzerland, and identified 
pricing of public and private motorized transport as a 
suitable one. The impact of utility-based dynamic pric-
ing for Autonomous Transportation Network Com-
panies, using an ABM for Greater London, UK, under 
monopoly and competitive conditions, was investigated 
by Karamanis et al., [65].

Wen et  al., [126] explored various pricing and hailing 
strategies for SAVs in a European city, while Nahmias-
Biran et  al., [102] combined the demand simulator of 
SimMobility with a meso-micro supply model to analyze 
service costs for both individual and shared Autono-
mous Mobility on Demand (AMoD) journeys in Tel-Aviv, 
Israel. Bucchiarone et al., [19] examined the introduction 
of autonomous shuttles in Trento, Italy, evaluating their 
service costs through an Agent-Based Model (ABM). 
Mo et  al., [98] investigated the competitive dynamics 
between public transportation and SAVs in Tampines, 
Singapore, focusing on revenue generation and passen-
ger costs. Ben-Dor et al., [13] used the MATSim platform 
to study the effects of various congestion and parking 
pricing strategies, as well as different SAV fleet compo-
sitions on SAV services in Jerusalem, Israel. Finally, Ste-
vens et  al., [119]  analyzed the financial sustainability of 
AMoD systems in Rotterdam, Netherlands, considering 
strategies for vehicle relocation, ridesharing, and charg-
ing through the AnyLogic ABM platform.

3.1.6  Charging infrastructures
Since SAVs are expected to be electric (EV) or hybrid 
electric vehicles (HEV), some researchers have investi-
gated the performance of SAVs with respect to the avail-
able charging infrastructure. Vosooghi et al. [122] related 
the performance of SAVs to their charging infrastructure 
in Rouen Normandy, France and found that performance 
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is significantly improved by the placement of fast charg-
ers and battery replacement infrastructures. Charging 
infrastructure for SAVs was also addressed by Zhang and 
Chen [134], who proposed a smart charging framework 
and argued that EVs with larger batteries respond bet-
ter to charging opportunities with low electricity costs 
and have greater potential to reduce total energy-related 
costs. Ahadi et al. [2] argued that charging station loca-
tions for SAV depend mainly on the spatial distribution 
of installation costs and charging demand, with optimal 
locations in both central areas where demand is high 
and suburbs where installation costs are lower. Dean 
et  al. [29] coupled repositioning and charging strategies 
in Austin, TX, resulting in 39% lower average wait times, 
28% more daily trips, and 1.6% fewer empty trips. Fur-
thermore, ridesharing is expected to downsize the fleet 
and reduce the number of charging stations required to 
keep the fleet operational. Compared to traditional ride-
hailing service, in the case of a city model resembling 
Austin, TX, ridesharing decreases the fleet size and the 
number of charging stations from 57,279 and 1562 to 
25,368 and 1058, respectively [35]. Last, Wang et al. [127] 
demonstrated that formulating platoons could reduce the 
existing system-wide energy consumption up to 9.6%. 
However, Loeb and Kockelman [82], who conducted 
a dynamic ridesharing model, found that the gasoline 
hybrid electric (HEV) fleet outperformed the EV fleet 
while being more profitable, offering response times of 
4.5 min compared to 5.5 min of the electric fleet.

3.1.7  User behavior
Modeling user behavior in the presence of SAVs is criti-
cal for planning and designing such systems. In this con-
text, Auld et al. [8] used the POLARIS ABM platform to 
test different levels of penetration of SAVs in the Chicago 
metropolitan area, IL. Hao and Yamamoto [44] investi-
gated travel behavior in Nagoya, Japan, considering trave-
lers’ intention to use SAVs and their perceptions about 
ownership and sharing of their private vehicles. In their 
paper, Kamel et  al. [63] investigated user preferences 
towards choosing SAVs, using an ABM in MATSim. 
Factors considered included age, gender, and income, 
which affected preferences for SAVs. Lokhandwala and 
Cai [86] developed an ABM in which different types of 
driver preferences for SAV were assumed. A study by 
Wang et al. [128] developed an ABM for simulating pla-
tooning formation and the interactions between SAVs 
and real-time travel requests,the objective was to capture 
the real-time behavior of SAVs as trip makers and then 
to evaluate the performance of an AMoD system with 
coordinated platooning formation. From a different per-
spective, Al Maghraoui et al. [4] examined travelers’ will-
ingness to use a SAV service depending on their current 

transportation mode in Paris, France. Nahmias-Biran 
et al. [101] used the ABM platform SimMobility in Sin-
gapore to analyze AMoD policies with respect to income 
and accessibility. Finally, Zhou et  al. [139] investigated 
the relationship between AMoD services, accessibility 
levels and relocation decisions of urban residents; again, 
SimMobility was used for that purpose.

3.2  SAV impacts
The identified studies on SAVs and ABMs have yielded 
remarkable and at times contradictory results, which 
provide valuable insights into the impact of integrat-
ing SAV services in urban road networks. It should be 
emphasized that the modeling techniques used, and 
especially the simplifications or assumptions applied, 
play an important role in the expected results [116]. The 
impacts are grouped with respect to traffic, modal shift, 
land uses, parking, the environment, energy consump-
tion, and operational and service aspects.

3.2.1  Traffic
Several papers have examined impacts to traffic at the 
network level, resulting in interesting, yet contradicting 
findings. According to Fagnant and Kockelman [32], a 
system of SAVs could save users ten times as many cars 
as they would need for private-vehicle travel, but that 
would induce about 11% more trips. Along the same 
lines, Fagnant et al. [33] argued that SAVs are expected 
to generate 8% more VKT in a low SAV penetration 
case, due to unoccupied trips or relocation issues. 
A study by Auld et  al. [8] reported that SAVs could 
increase total VKT by about 4%, if an 80% increase in 
SAV service capacity is achieved. According to Javan-
shour et al. [58], an AMoD system with 10% penetration 
has the potential to radically reduce the existing private 
vehicle fleet by 84%, while maintaining the same travel 
demand. However, this would result in an increase of 
29% to 77% in VKT depending upon the type of SAV 
service.

In line with previous studies, Dia and Javanshour [30] 
found that reducing the number of vehicles travelling 
in the case of an AMoD system, increased total VKT by 
29% in case of zero waiting time and by 10% when the 
waiting time is up to 5 min, using Melbourne, Australia; 
these findings were later verified by Javanshour et al. [58]. 
Another study conducted by Oh et  al. [105] concluded 
that an unrestricted implementation of AMoD could 
lead to a significant increase in network congestion and 
VKT in Singapore. Harper et al. [46] demonstrated that 
SAVs in downtown Seattle, WA, averaged an 5.6–6.4 km/
day (3.5–4.0 mi/day) additional distance of travel, and 
that at a high penetration rate (50–100% AV), AVs would 
travel an additional 9.0–13.5  km/day (5.6–8.4 mi/day). 
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Finally, a study by the ITF [55] for Lisbon, Portugal as a 
case study, found that different autonomous taxi services 
would yield an increase of up to 89% in VKT. Similarly, 
Hörl et al. [50] found that the use of autonomous taxis for 
individuals in Zurich, Switzerland would increase VKT 
up to 60%. Other studies have demonstrated that the 
use of SAVs will lead to reduced vehicle trips and VKT. 
In this context, Heilig et al. [47] argued that in the case 
of Stuttgart, Germany, if 85% of private vehicle trips were 
undertaken by SAVs this would result in a 45% reduction 
in vehicle trips and a 20% reduction in vehicle kilometers. 
Lokhandwalaa and Cai [84] found that SAV based ride-
sharing in New York, NY, increased occupancy from 1.2 
to 3, and reduced overall mileage up to 55%. Finally, Yan 
et  al. [130] reported that the introduction of SAV ride-
sharing services could decrease VKT by 17%.

In terms of travel times, Bischoff & Maciejewski [14] 
reported that an increase of 17% in total network travel 
times due to idling would be expected because of SAVs, 
but higher congestion in certain points would not nec-
essarily be expected. Llorca et  al. [81] again found that 
total network travel times for both autonomous vehicle 
and conventional trips would increase when SAV fleets 
are introduced, but also argued that peak hour conges-
tion would be reduced. According to Bösch et al. [17], if 
a small percentage of the population would use SAV, SAV 
systems can only reduce travel times at the cost of sig-
nificant modal shifts. On the contrary, Hamadneh & Esz-
tergár-Kiss [43] observed a reduction in both travel time 
and travel distance. Venkatraman and Levin [121] found 
encouraging results in reducing the total travel time of 
people for different SAV fleet sizes and demand levels.

3.3  Modal split
In addition to travel behavior and kilometers or miles 
traveled, the literature reports that SAVs will certainly 
affect the modal split. According to Chen and Kockelman 
[20], the potential share of SAVs in Austin, TX, would 
likely to range from 14 to 39%, when competing with 
conventional cars and public transportation. Liu et  al. 
[79] showed that travelers who travel longer distances 
prefer SAVs over private human-driven vehicles because 
of avoiding driving burdens. ITF [55] indicated that in 
Lisbon, Portugal, SAVs would reduce the use of private 
vehicles, by 23%-65% and Kamel et al. [63] found that in 
Paris, France, the share of SAV trips would range from 
3.8% to 5.3%. The findings of Ishibashi & Akiyama [54] 
for Tokyo, Japan showed that about 14%-32% of the pop-
ulation would switch to SAVs, and that those who trave-
led 2.0–8.0 km by train or bicycle would likely switch to 
SAVs. On the contrary, a study by Cyganski et al. [24] for 
Braunschweig, Germany, showed only minor changes 
in the modal split because of SAVs, primarily due to the 

short distances involved. Similarly, Nahmias-Biran et al. 
[102] found that the mode shift from active transporta-
tion and public transport to AMoD in Tel-Aviv, Israel, 
was insignificant, due to the travel costs of AMoD ser-
vices. Regarding taxis, Liu et al. [77] concluded that SAVs 
could attract more users than conventional taxis due to 
lower costs. Finally, Ben-Dor et  al. [13] reported that if 
parking or congestion pricing schemes would be applied, 
SAV users would come equally from PT and private 
vehicles.

3.3.1  Interaction with land uses
With respect to SAVs impact on land uses, Kim et  al. 
[69] showed that the full integration of SAVs into the 
urban street environment was expected to lead to dis-
persed spatial structures; the authors simulated the spa-
tial impacts of SAVs and assumed that the introduction 
of SAVs would change the location choices of travelers in 
addition to the attractiveness of regions. On the contrary, 
Zhou et  al. [141] demonstrated that the implementa-
tion of AMoD would not lead to outward migration nor 
intensify the disparity between home and work locations.

3.3.2  Parking demand
Due to their operational model, SAVs will change park-
ing demand; this potential change has been explored in 
a few studies. Zhang et al. [137] estimated the impact of 
SAVs on demand for parking demand and reported that 
SAV systems would be able to eliminate up to 90% of 
parking demand for customers using SAVs, for a low SAV 
penetration rate of 2%. According to Dia and Javanshour 
[30], demand for parking would decrease from 58 to 83%, 
depending upon travelers waiting time for SAV service. 
The study of Harper et al. [46] showed in the case of Seat-
tle, WA, parking revenues would radically decline if SAV 
penetration increased, and that parking services would 
eventually become economically not viable.

3.3.3  Environment
There are several studies looking at the environmen-
tal footprint of SAVs. Zhang, et  al. [138] first reported 
that SAVs can be environment friendly for cities in the 
long run. In the same direction, Martinez and Viegas 
[91] emphasized that if private vehicle were replaced by 
shared ones, this would significantly reduce CO2 emis-
sions. According to Liu, et  al. [78], found that different 
SAV operating strategies could reduce emissions by up 
19%. Lokhandwala and Cai [85] showed that a SAV taxi 
fleet could reduce taxi CO2 emissions in New York City, 
NY by up to 861 tons/day. Lokhandwala and Cai [84] 
claimed that dynamic ridesharing of SAVs could decrease 
carbon emissions by up to 866 tons/day in New York 
City, NY. Yao et  al. [132] found that exhaust emissions 
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from the SAVs fleet in Hangzhou, China, would be 12.3% 
lower than those from the human-run fleet. Accord-
ing to Oh et  al. [106], the application of AMoD in Sin-
gapore was found to lead to a reduction in vehicular 
emissions, particularly NOx and PM, by 4.3–5.7% and 
5.6–8.2%, respectively. In contrast, Lu et  al. [87] found 
that the environmental impact of SAVs, when these 
replace conventional vehicles, does not show significant 
improvement, because of the emission intensity of the 
local power grid. When it comes to traffic noise, Zwick 
et al. [142] demonstrated that replacing all car trips with 
an autonomous ride-pooling system based on bus stops 
leads to a dramatic reduction in noise in residential areas 
in Munich, Germany.

3.3.4  Energy consumption
As SAVs are expected to largely adopt electric propulsion 
and technologies (Kovačić et al., 2022), energy consump-
tion and charging are important and have been addressed 
by different studies. According to Chen et  al. [21] each 
SAV with a range of 80 miles would replace 3.7 private 
vehicles and each SAV with a range of 200 miles replace 
5.5 private vehicles, under Level II (240-V AC) charg-
ing. Sheppard et al. [112] found that all mobility in USA 
could be served by 12.5 million SAVs, with an energy 
demand of 1142 GWh/day (8.5% of the national electric-
ity demand in 2017) and a peak charging load of 76.7 GW 
(11% of the U.S. electricity peak). In a study by Oh et al. 
[106], the implementation of AMoD services in Singa-
pore was estimated to result in a rise in energy consump-
tion by 16.94–24.33%.

3.3.5  Operations and services
The last category refers to the operational and service-
related impacts of SAVs, including costs and revenues, 
waiting times, vehicle fleet size, and other trip parame-
ters. It should be underlined that many papers have laid 
their interest in this specific area. Beginning with costs 
and revenues, Fagnant and Kockelman [34] reported 
that dynamic ridesharing reduces total service times 
and travel costs for SAVs users, even after accounting for 
extra passenger pick-ups, drop-offs and non-direct rout-
ings. The authors also showed that a private fleet opera-
tor paying $70,000 per new SAV could earn a 19% annual 
(long-term) return on investment. When offering SAV 
services at $1.00 per mile of a non-shared trip. Among 
other studies, Hörl et  al. [50] found that even under 
conservative pricing a large share of travelers would be 
attracted to SAVs, and Liu et al. [79] indicated that higher 
SAV fare rates allow for a larger private vehicle replace-
ment (ranging from 5.6 to 7.7 private vehicles per SAV). 
In a subsequent study, Liu et al. [78] argued that the non-
detour and detour sharing SAV strategies can reduce 

operational costs by 16% and 24% respectively. Farhan 
and Chen [35] focused on vehicle occupancy and dem-
onstrated that allowing multiple occupants improves ser-
vice rate as well as system-wide benefits from $1.34  M 
to $1.52 M. Yao et al. [131] found the revenue of a SAV 
system in Hangzhou, China to be approximately four 
times as the daily system operation costs. Finally, a study 
by Zhang and Guhathakurta [135] for Atlanta, GA, also 
indicated that a SAV service would yield reduced com-
mute costs.

Regarding passenger waiting time, Shen and Lopes 
[110] proposed an algorithm for a SAV system, which 
could reduce average passenger waiting time by up to 
29.82%. As noted by Chen and Kockelman [20], pricing 
strategies that attempt to match available SAVs supply 
with expected travel demand can reduce average wait-
ing times by 19 to 23%. Liu et al. [78] claimed that SAV 
detour and non-detour sharing strategies can reduce 
waiting times by 62% and 82%, respectively. In the same 
direction, Hyland and Mahmassani [53] found that SAV 
dynamic strategies involving drop-off SAVs on the route 
in the assignment problem reduce traveler waiting times. 
Findings by Luo et al. [88] indicated that average passen-
ger waiting times fell within an acceptable range in differ-
ent SAV operations in Gunma, Japan. Wang et  al. [128] 
reported that an AMoD system with vehicle platooning 
formation significantly affects the average waiting time 
of users. According to Pulhès and Berrada [108], for dif-
ferent levels of SAV fleet size and penetration, the maxi-
mum average waiting time is 15  min, and during peak 
periods this value can be as high as more than 17  min. 
Also, De Souza et al. [27, 28], who focused on the impact 
of a repositioning method for SAVs, also observed an 
improvement in SAVs waiting times.

Concerning SAVs fleet size itself, Wen et al. [126] noted 
that SAVs fleet size is the outcome of a tradeoff between 
service levels and operating costs. Also, according to 
Javanshour et al. [58], there is a strong quadratic relation-
ship between the SAVs fleet size and VKT when demand 
is kept constant.

When it comes to the impact of SAVs on the total 
vehicle fleet in a region, SAVs have the potential to dra-
matically reduce the number of vehicles needed to meet 
current travel demand [55]. Looking at the results of vari-
ous studies, Spieser et al. [117] reported that the fleet size 
of SAVs needed to serve the entire population of a city is 
up to 66% smaller than the fleet of private cars. Dia and 
Javanshour [30] claimed that SAVs in Melbourne, Aus-
tralia, could lead to a large reduction in the total number 
of vehicles needed to meet travel demand (reduction of 
43% to 88%). In the same direction, Lu et al. [87] pointed 
out that the needed SAV fleet to meet daily commuter 
demand with waiting times of less than 3  min is only 
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20% of the conventional single occupant car fleet. Wang 
et al. [123] found that during rush hour, about 240–250 
SAV vehicles are needed to meet demand, while dur-
ing off-peak hours, only about 30 vehicles should be in 
operation. Liu et  al. [78] found that non-detour and 
detour vehicle sharing strategies can reduce total vehicle 
fleet size by 19% and 27%, respectively. Another study by 
Lokhandwalaa and Cai [84], highlighted that switching 
from traditional taxis to shared autonomous taxis could 
potentially reduce fleet size by 59% while maintaining 
service levels and not significantly increasing travelers 
waiting time. In the same line, Llorca et al. [81] showed 
that it is possible to replace three conventional cars with 
one autonomous taxi while meeting the demand for trips 
with reasonable waiting times. In addition, it is found 
that SAVs could replace 5 to 9 private vehicles in Austin, 
TX, while maintaining adequate service levels [21, 33]. 
Bischoff and Maciejewski [14] displayed that a fleet of 
100,000 autonomous taxis is sufficient to replace the pas-
senger car fleet in Berlin, Germany on a typical weekday 
with a high quality of service for customers.

4  Discussion, policy, and future research 
recommendations

From the papers reviewed, critical insights were 
gleaned regarding the use of ABMs to explore the 
impact of SAVs on future urban environments. One 
notable observation from the analysis of the selected 
papers is the uneven geographic distribution of case 
studies examining SAVs and their effects on urban 
environments. It appears that specific cities or regions 
are more actively engaged in investigating the potential 
impacts of SAVs (Table 1).

Notably, Singapore leads with 10 studies on ABMs for 
SAVs, followed by Austin (TX) with 8, Sioux Falls (SD) 
with 6, New York City (NY) with 5, Munich with 3, Mel-
bourne with 3, Bloomington (IL) with 3, Zurich with 3 
and Chicago (IL) with 3. These numbers indicate varying 
levels of research activity in different regions, possibly 
reflecting the interest, funding, or academic and industry 
focus in these areas on the topics indicated.

ABMs were also found to be extensively used for ana-
lyzing and assessing impacts of SAV services; these 
impacts are summarized in Fig.  2. Overall, most publi-
cations (regardless of the assumptions and the setup of 
the ABMs employed) conclude that both vehicle-kilom-
eters travelled, and vehicle hours will increase, implying 
a negative impact in the performance of transportation 
networks, because of SAV operations. In addition, SAVs 
are expected to affect the modal split in their favor, 
reshape the spatial structure of cities, creating condi-
tions for more compact urban agglomerations (due to 

their intrinsic property of being shared), and contribute 
to a noticeable reduction in parking demand, supporting 
the transformation of public spaces. As for environmen-
tal impacts, several papers argue that SAVs will support 

Table 1 Case studies per city worldwide

City Number 
of 
studies

Singapore 10

Austin, TX 8

Sioux Falls, SD 6

New York City, NY 5

Chicago, IL 3

Munich, Germany 3

Melbourne, Australia 3

Bloomington, IL 3

Zurich, Switzerland 3

Lisbon, Portugal 2

Berlin, Germany 2

Ann Arbor, MI 2

Nagoya, Japan 2

Seattle, WA 2

Paris, France 2

Hangzhou, China 2

Atlanta, GA 2

Tel-Aviv, Israel 2

Delft, Netherlands 1

Stutgart Region, Germany 1

London, UK 1

Brunswick, Melbourne, Australia 1

Zug, Switzerland 1

Sejong, South Korea 1

Seoul, South Korea 1

Jerusalem, Israel 1

Gunma, Japan 1

Budapest, Hungary 1

Izu Oshima, Japan 1

The Hague, the Netherlands 2

Palaiseau, France 1

Lyon, France 1

Rouen Normandie, France 1

Minneapolis–Saint Paul, MN 1

Paris-Saclay University 1

Trento, Italy 1

Tampines, Singapore 1

Amsterdam, the Netherlands 1

Tokyo, Japan 1

Kozoji, Japan 1

Rotterdam, the Netherlands 1
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the reduction of emissions and noise pollution. Finally, 
impacts related to SAV operations include the improve-
ment of traveler waiting times, and the replacement of 
conventional vehicles.

4.1  Policy recommendations
Identified SAV impacts can serve as the foundation 
for documenting policy recommendations that ensure 
an appropriate transition to an automated age, which 
still puts humans at the center [107]. First and fore-
most, there is a consensus among studies indicating an 
increase in VKT and VHT due to the introduction of 
SAVs. This means that urban environments are domi-
nated by motorized vehicles for most of the day, affecting 
sociality and interaction between people in public spaces 
[25]. Therefore, it is suggested to prioritize constraints 
regarding the use of SAVs in urban areas, e.g. by exclud-
ing them from certain central areas. Most importantly, 
urban development should focus on proximity solutions, 
such as x-minutes cities [83], which can reduce the dis-
tances and time between home and facilities and thus 
create suitable conditions for active and non-motorized 
travel [70]. This future endeavor could mitigate the nega-
tive impacts of more VKT, and time spent traveling.

In terms of modal split, the literature argues that 
SAVs will gain travelers over other modes, implying that 
motorization will again prevail in urban areas. Therefore, 
SAVs should act as a substitute for private vehicles, and 
not as a competitor to active transportation and pub-
lic transport [61]. Therefore, planning will need to con-
sider fruitful synergies of SAVs with conventional public 

transport and active modes, such as a common street 
classification systems and coordination of services.

As for land uses, SAVs were found to be much bet-
ter suited to compact urban areas than private AVs, 
which are expected to lead to dispersed urban patterns 
[38]. Therefore, future cities should encourage mixed 
land uses and densification to combat urban sprawl 
trends and facilitate the movement of SAVs compared 
to AVs. Another issue that should be of concern are the 
inequalities that can arise from the geographical distri-
bution of SAV services [95]. To this end, SAV deploy-
ment schemes (standard or on-demand routes) should 
sufficiently serve the urban fabric (taking into account 
strategic visions for urban development and potential 
exclusion areas), ensuring solid accessibility for all who 
live and work in a city.

Moving on to parking demand, as significant decrease 
is anticipated, focus should be given on transforming 
these liberated spaces into human-oriented places [36]. 
The reallocated space should be reserved for pedestrians, 
cyclists and people with reduced mobility to encourage 
active mobility and reclaim urban space for vulnerable 
road users. As for policies related to the environmental 
impact of SAVs, apart from the potential benefits for the 
urban environment of replacing private cars with SAVs, 
synergies with active transportation modes are also a 
promising approach.

4.2  Future research
Research on planning and analyzing SAV services 
and the exploitation of ABMs for that purpose has 
been extensive in the recent years [11, 49, 59, 64, 74, 

Fig. 2 Shared automated mobility ecosystem through ABM simulation studies
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89, 100, 125, 129, 136]. However, there are research 
areas on SAV operations and services, for which 
ABMs can be used for investigating, assessing, and 
validating this upcoming mobility landscape (Fig.  3). 
First, SAVs cannot fully function in today’s road net-
work and therefore need suitable road infrastructure. 
This implies that new road functional categories that 
facilitate the circulation of SAVs should be intro-
duced [120], and evaluated with suitable tools such 
as ABMs. Second, it is widely acknowledged that in 
the complex and dynamic urban structures of the  21st 
century, conventional public transportation may not 
be enough. Therefore, public transport should deploy 
automated mobility solutions [114], which can benefit 
urban transport systems, and become a driving force 
towards multimodality [3, 23, 99]. Third, SAVs can be 
a solution to the transportation needs of often captive 
travelers, such as elders, children, and people with dis-
abilities (see also Nahmias-Biran et  al., [102]). There-
fore, future studies should concentrate on designing, 
implementing, and evaluating multimodal transporta-
tion networks and systems focusing on targeted trave-
ler groups, with Shared Autonomous Vehicles (SAVs) 
playing a crucial role. Obviously, given the complex-
ity of such systems, ABMs can be invaluable tools for 
their planning, analysis and evaluation.

Finally, the adoption of SAVs as a transportation mode 
will depend on public acceptance and user preferences. 
Research should focus on individuals’ willingness to 
share rides with others and factors that influence this 
decision. For instance, Lavieri and Bhat [71] found that 
people are less sensitive to the presence of strangers 
when commuting to work than for leisure activities. In 

terms of acceptance, Nikitas et  al. [104] also demon-
strated that people across the globe perceive SAVs as 
a crucial employment disruptor. Consequently, it is a 
challenge for future studies to consider public accept-
ance parameters in the design and evaluation of SAVs 
services, and their subsequent introduction in ABMs.

5  Conclusions
This paper reviewed the literature on the use of ABMs 
on planning, analyzing, and assessing the impacts 
of SAV operations and services. The first part of the 
review identified different ABM applications in the 
context of SAV services and operations, suggesting 
the wide acceptance and suitability of these tools for 
tackling SAV problems. The second part of the review 
investigated the impact of SAVs in the network perfor-
mance mode choice, land uses, the environment and 
parking demand. Most of the studies reviewed sug-
gested, that while network performance will worsen 
and demand will shift to SAV usage, there will be 
environmental, operational and land use related ben-
efits because of SAV services. Based on the review 
outcomes, policy suggestions for the introduction of 
SAVs and future research recommendations included 
the need to consider SAV services in conjunction with 
land use measures, and the integration of SAV in mul-
timodal transportation systems. Overall, this paper 
aspires to serve as a valuable basis for future research 
and help policy makers, stakeholders, and local com-
munities into considering appropriate, efficient and 
sustainable ways of introducing SAVs in future cities.

Fig. 3 Directions for future research
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Appendix A
Assumptions

# Author Year Study area Framework Assumptions

1 Fagnant, D.J., & Kockelman, 
K.M

2014 Hypothetical city N/A Gridded city, Fixed fleet size, Fixed 
distance per time period travel

2 ITF 2015 Lisbon, Portugal N/A Mode of shared and self-driving 
operation for the simulated 
fleet, availability of high-capacity 
public transport, penetration rate 
of the shared and self-driving fleet, 
time period

3 Zhang, W., Guhathakurta, S., 
Fang, J., & Zhang, G

2015a Hypothetical city Matlab Grid based hypothetical city, 2% SAVs 
penetration rate, trip generation 
based on National Household Travel 
Survey

4 Fagnant, D.J., Kockelman, K.M., 
& Bansal, P

2015 Austin, TX MATSim low level penetration of SAVs, sample 
of trips derive from the region’s 
planning model to generate demand 
across traffic analysis zones

5 Kim, K.-H.; Yook, D.-H.; Ko, Y.-S. 
& Kim, D

2015 Seoul, South Korea N/A Future road condition, step-by-
step adoption by road type, travel 
demand estimated based on Korea 
Transport DataBase.
Travel demand was distributed 
to road network based on Wardrop’s 
principle.
Only household agents were consid-
ered, only urban and non-urban land 
used were considered

6 Zhang W., Guhathakurta S., 
Fang, J., & Zhang, G

2015b Hypothetical city Matlab DR-SAV System: off-peak speed 30, 
peak speed 21, fleet size 700, willing-
ness to share ride 50%

7 Azevedo, C.L 2015 Singapore SimMobility Car Access was forbidden in Cen-
tral Business District of Singapore, 
Buses—Mass Rapid Transit—Taxis 
had access in this area, AMoD service 
was 40% cheaper than regular taxis, 
buses and MRT kept their frequen-
cies, fares and capacities and the taxi 
fleet and cost remained the same, 
carpooling was not enabled

8 Shen, W., & Lopes, C 2015 New York City, NY Mobility Testbed/ Agent-
Polis

Vehicle speed limit 25miles/hour,
load capacity of AV equal to 4,
maximum speed capacity 100miles/
hour

9 Marczuk, K.A., Hong, H.S., 
Azevedo, C.L., Adnan, M., Pend-
leton, S., Frazzoli, E., & Lee, D

2015 Singapore SimMobility Individual rides were considered, 
where each trip was served by a sin-
gle vehicle
In station-based model, after servic-
ing a trip, AMoD vehicles always 
drove back to the nearest station 
and waited for new requests (and 
re-charge if necessary).
In free-floating model, AMoD vehi-
cles self-parked at drop-off locations, 
where they waited for new requests. 
It is assumed that all drop-off loca-
tions contained parking facilities 
where the vehicles could wait 
and optionally recharge.
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# Author Year Study area Framework Assumptions

10 Bosch, P., Ciari, F., & Axhausen, 
K.W

2016 Zurich, Switzerland MATSim Small percentage of population 
would use AVs, only trips made 
with cars would be substituted by AV 
trips (no modal shift)

11 Chen, D., Kockelman, K.M., & 
Hanna, J

2016 Hypothetical city 
(Austin, TX)

N/A Gridded city divided into 4 zones.
Each zone has its own average trip 
generation rate and average peak 
and off-peak travel speeds.

12 Marczuk, K., Soh, H., & Azevedo, 
C.L

2016 Singapore SimMobility Three rebalancing methods: 
(i) no rebalancing (vehicles are 
only moved when assigned to cus-
tomers and parked at the destination 
of the trip), (ii) offline rebalancing 
(run based on the historical data 
and the rebalancing counts are 
decided before starting the simula-
tion), and (iii) online rebalancing 
(is run during the simulation time 
and the rebalancing counts are 
optimized based on the predicted 
requests).

13 Hörl, S., Erath, A., & Axhausen, 
K.W

2016 Sioux Falls, USA MATSim actual data from city of Sioux Falls 
were used
AVs are randomly distributed based 
on population density

14 Bischoff, J., & Maciejewski, M 2016 Berlin, Germany MATSim Synthetic population represents 
a typical weekday in Berlin, only trips 
with privates were kept and replaced 
with autonomous taxis.

15 Chen, D., & Kockelman, K.M 2016 Hypothetical city 
(Austin, TX)

N/A Hypothetical city 100 × 100 mile, 
SAVs serve 10% of all trips, multino-
mial logit model to allow all trips 
in the region to choose among pri-
vate vehicle, transit, and SAEV modes, 
all trips more than 1 mile in length.

16 Fagnant, D.J., & Kockelman, 
K.M

2016 Austin, TX coded in C +  + 3.02 person trips per day,
0.99 licensed drivers per conven-
tional vehicles

17 Hörl, S 2017 Sioux Falls, SD MATSim Assumption of 2.6 pax from the cost 
calculator

18 Merlin, L 2017 Ann Arbor, MI NetLogo All transit riders in a small city could 
be served by an automated taxi 
system
For a single-rider taxi system, passen-
gers are assumed to have a boarding 
time of one minute and an alighting 
time of one minute.
For the shared-ride system, the same 
fleet size would almost certainly 
perform at least as well as the single-
rider system with respect to wait 
times.
18 Vehicle depreciation based 
upon either time or distance. Diver-
sion travel time 19constraint. All 
passengers within the system must 
be willing to share rides.

19 Auld, J., Sokolov, V., & Stephens, 
T

2017 Chicago, IL POLARIS based on existing regional travel 
demand,
different penetration rate of autono-
mous vehicles

20 Liu, J., Kockelman, K.M., Bosch, 
P., & Ciari, F

2017 Austin, TX MATSim SAVs have the same driving charac-
teristics with human driven cars
Not all travelers would choose SAVs
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# Author Year Study area Framework Assumptions

21 Llorca, C., Moreno, A., & 
Moeckel, R

2017 Munich, Germany MATSim Travel demand was generated using 
the population synthesizer of SILO, all 
workers were sent to their workplace 
during the morning hours, mode 
was selected according to distance

22 Martinez, L., & Viegas, J.M 2017 Lisbon, Portugal Ν/Α Two scenarios: shared taxi and taxi-
bus. In first scenario bookings 
were made in real time, maximum 
waiting time was 5 min (for trips 
less than 3 km) & 10 min (for trips 
more than 12 km), trips were served 
by 6-seat minivans; in second 
scenario bookings are made 30 min 
in advance, maximum waiting time 
was 10 min from preferred boarding 
time, trips were served by minibuses.

23 Dia, H. & Javanshour, F 2017 Melbourne, Australia Commuter Two AMoD scenarios; in the first 
one waiting time was 0 and pri-
vately owned self-driving cars 
(25%) and shared self-driving cars 
with capacities ranging from two 
to four people (75%) replaced all 
private vehicle travel; in the second 
scenario waiting time was up to 
5 min.

24 Jäger, B., Agua, F.M.M., & Lien-
kamp, M

2017 Munich, Germany JADE Control Center Agent, Dispatching 
Algorithm, Taxi Agent, Fleet Manage-
ment Agent

25 Scheltes, A., & De Almeida 
Correia, G.H

2017 Delft, Netherlands Anylogic A fleet of small fully automated 
electric vehicles, a dispatching 
algorithm distributes travel requests 
amongst the available vehicles using 
a FIFO sequence, vehicles are picked 
based on a set of specified control 
conditions.

26 Hao, M., & Yamamoto, T 2017 Nagoya, Japan artisoc Only intra-zone travel considered 
within the study area
Travel fee of SAVs 55 JPY/kilometer, 
waiting time 1 min, travel time set 
to be the same as conventional 
vehicles.
People with intention of owning pri-
vate cars own vehicles, while people 
with no intention of having a private 
car stop owning vehicles.
Customers will be picked up by the 
nearest AV and the appointment 
will be canceled if the waiting time 
is more than one minute.

27 Heilig, M., Hilgert, T., Kager-
bauer, M., & Vortisch, P

2017 Stutgart Region, 
Germany

mobiTopp All private cars are replaced 
by autonomous vehicles,
each ride is shared by up to four 
people

28 Basu, R., Araldo, A., Akkinepally, 
A. P., Nahmias Biran, B. H., 
Basak, K., Seshadri, R., & Ben-
Akiva, M

2018 Hypothetical city (with 
patterns observed 
in Singapore)

SimMobility Generalized travel cost of AMoD 
based on literature.
Change on travelers’ knowledge 
of the system.

29 Karamanis, R., Angeloudis, P., 
Sivakumar, A. & Stettler M,

2018 London, UK N/A Each traveler evaluates the utility 
of each option
AVs exist in the system through-
out the whole simulation period, 
travelers appear once at the time 
of their travel request and exit 
when they are served.
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# Author Year Study area Framework Assumptions

30 Harper C., Hendrickson C., & 
Samaras C

2018 Seattle, WA N/A Gridded network, simulation ignores 
the actual roadway geometry, each 
AV makes a decision based on park-
ing cost & searches for cheaper park-
ing, all AVs are aware of the amount 
of available parking

31 Lu, M., Taiebat, M., Xu, M. & 
Hsu, S.-C

2018 Ann Arbor, MI GAMA Start times of trips to work and trips 
home both follow a normal dis-
tribution, personal cars replaced 
by autonomous taxis, people could 
choose whether to share an autono-
mous taxi with others or not

32 Liu, Z., Miwa, T., Zeng, W., & 
Morikawa, T

2018 Sioux Falls, SD MATLAB taxis cannot be hailed at the road-
side, other traffic modes are 
not considered, taxis are shared 
by a maximum of two customers, 
every request for a taxi is for a single 
customer

33 Lokhandwalaa, M., & Cai, H 2018 New York City, NY AnyLogic All rider groups that are willing 
to share will first try to find a shared 
ride before searching for an idle 
taxi, a rider group who is not will-
ing to share will search for a ride 
for 5 min. If no match is found, 
the ride group will exit the system 
unserved. Capacity of all taxis limited 
to 4, a rider is only eligible to share 
a ride if they allow a distance overage 
of at-least 100 m. Similarly, the maxi-
mum a rider can deviate has been 
capped to 10,000 m., time required 
for refueling is negligible.

34 Wang, B., Ordonez Medina, 
S.A., & Fourie, P

2018 Sioux Falls, SD MATSim All agents executed exactly two legs 
per day; home to work or secondary 
& work or secondary to home, initial 
fleet size was 0, vehicle capacity 
was 8 seats & vehicle idle time 
was 1800 secs.

35 Javanshour, F., Dia, H., & 
Duncan, G

2018 Melbourne, Australia Commuter 10% market penetration rate, travel 
demand for each transport mode 
is unchanged, people use ride-
sharing in groups of two, people 
traveling as a group have the same 
origin, destination and time sched-
ule, station-based one way AMoD 
system, people walk from home 
to stations, empty travels for recharge 
or refuel are overlooked.

36 Cyganski R., Heinrichs M., Von 
Schmidt, A., & Krajzewicz, D

2018 Brunswick, Melbourne, 
Australia

TAPAS Factors for value of time obtained 
from a stated preference user 
survey, advantages of riding 
in an automated vehicle only applied 
after a ramp-up time.

37 Shen, Y., Zhang, H. & Zhao, J 2018 Singapore AnyLogic Planning and regulation, transit fare 
and subsidy, coordination and com-
petition, fare, ticketing and informa-
tion integration.

38 Hyland, M., & Mahmassani, H.S 2018 N/A N/A (coded in Python) Share use of AVs as a mobility service, 
central operator, direct origin-to-
destination service, operator assigns 
AVs to traveler requests in real-time, 
travelers’ requests enter the system 
dynamically and stochastically.
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# Author Year Study area Framework Assumptions

39 Farhan, J., & Chen, T. D 2018 Hypothetical city 
(100 × 100 mile)

N/A (coded in C + +) Time-discrete SAEV simulation 
model, clustering using similar-
ity evaluation, rideshare matching 
optimization model

40 Wen, J., Chen, Y. X., Nassir, N., 
& Zhao, J

2018 N/A (spread out resi-
dential area)

N/A Autonomous Vehicles and Public 
Transport are operated or regulated 
by public authorities

41 Bosch, P., Ciari, F., & Axhausen, 
K.W

2018 Zug, Switzerland MATSim Existing modes include mass transit 
public transport (PT), the slow modes 
(SM) walk and bike, and motorized 
individual transport (MIT). For PT 
and MIT, the respective autonomous 
version was assumed (aPT and aMIT), 
Future modes are all based 
on autonomous taxis, which can be 
operated as a traditional taxi service 
(aTaxi) with exclusive single user ser-
vice or as a ride-sharing service (aRS) 
which can carry multiple passengers 
at the same time.

42 Nahmias-Biran, B., Oke, J.B., 
Kumar, N., Basak, K., Araldo, A., 
Seshadri, R., Akkinepally, A.P., 
Lima Azevedo, C., & Ben-Akiva, 
M.E

2019 Singapore SimMobility Two modes of AMoD: AMoD 
as a non-shared, driverless ride 
(AMoD) and AMoD as a shared ride 
(AMoD Pool).
A single AMoD ride will be 50% 
cheaper compared with MoD, 
and that a shared ride will be 30% 
cheaper than a single ride.

43 Kim, C., Jin, Y.-G., Park, J., & 
Kang, D

2019 Sejong, South Korea MATSim Transportation network data simpli-
fied to save computing time. External 
trips were excluded.

44 Zhou, Y., Li, Y., Hao, M., & Yama-
moto, T

2019 Nagoya, Japan Artisoc 4 Three user groups: park-and-
ride commuters who park SAEVs 
at the station and take the train 
to their workplaces; inbound com-
muters who disembark from trains 
at the station and use the vehi-
cles to reach their workplaces 
within the target area; elderly 
and disabled residents, who use 
shared autonomous vehicles for trips 
within the target area.
In the evening peak hours, the same 
number of P&R commuters reverse 
their morning commuting trips 
by transferring at the same stations 
and returning to their origins.
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45 Li, L., Lin, D., Pantelidis, T., 
Chow, J., & Jabari, S. E

2019 Brooklyn, New York, NY N/A The simulation considers two types 
of agents, SAEV agents and customer 
agents
The pick-up distance is set to 1 km, 
maximum waiting time is set 
to 30 min
Νumber of chargers per charging 
station is 6, the battery range for all 
SAEVs is set to a constant of 200 km. 
All SAEVs are assumed to be fully 
charged and uniformly distributed 
among all stations at the beginning 
of the simulation.
The percent of charging stations 
in the area was varied from 10 to 50% 
in 10% increments.
Fleet sizes were varied from 200 
to 2000 in 200-vehicle increments.
5 different kinds of charging speeds 
were simulated.
Both no relocation and relocation 
were tested and compared.

46 Gurumurthy, K.M., Kockelman, 
K.M., & Simoni, M

2019 Austin, TX MATSim AV ownership for 10% of the simu-
lated population.
Personal AVs are expected to travel 
empty (hypothetically) and not incur 
significant parking costs.
A shared ride in a SAV is expected 
to cost less, approximately half 
as much as a solo trip in a SAV.

47 Ben-Dor, G., Ben-Elia, E., & 
Benenson, I

2019 Tel Aviv, Israel MATSim SAV when not in use – park 
near the end of the previous journey.
Each scenario is examined 
with and without the possibility 
to reject an agent’s request.
The travel time of the marginal pas-
senger cannot be 1.5 times longer 
than the travel time of a direct OD 
car trip; maximum waiting time can-
not exceed 12 min.

48 Luo, L., Troncoso Parady G., 
Takami, K., & Harata, N

2019 Gunma, Japan MATSim Five travel modes considered: 
human-driven vehicle (HV), SAV, PAV, 
bicycle and walking. HV and PAV are 
exclusive to an agent, that is, they are 
not shared with other agents.
AVs are assumed to have a posi-
tive effect in road capacity. Driver 
and passenger mode are separated 
for the car mode in the PT data 
since these two are assumed to differ 
in marginal utility of time. Scenarios 
for different market penetration.

49 Wang, S., Correia, G. H. de A., & 
Lin, H. X

2019 Hypothetical urban 
area

Anylogic No induced travel demand is taken 
into account. All travelers are willing 
to share rides with strangers.
The battery capacity can support 
full-day operations for each SAV.  The 
parking spaces are enough for all 
the SAVs in each station. The speed 
of the SAV is 20% lower than that in 
off-peak hours. Travelers will give 
up requesting a SAV when the wait-
ing time for a vehicle assignment 
exceeds 5 min. Maximum number 
of travelers in a shared car is two.
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50 Loeb, B., & Kockelman, K.M 2019 Austin, TX MATSim Six scenarios: 1) Gasoline Hybrid-
Electric SAV, 2) Short-Range SAEV, 3) 
Long-Range SAEV, 4) Long-Range 
SAEV Fast Change, 5) Short-Range 
SAEV Fast Change, 6) Long-Range 
SAEV Fast Charge, Reduced Fleet. 
Simulation process features charging 
strategies, dynamic ridesharing, 
mode choice, and a multi-step 
search algorithm, up to 4 people 
share a ride

51 Hamadneh, J., & Esztergár-
Kiss, D

2019 Budapest, Hungary MATSim Scenarios: 1) the activity chain 
of travelers without changes on avail-
able modes. SAsV park at the destina-
tion, when there is no call for drive 
to pick up a traveler. 2) the impacts 
of SAVs on the car users (i.e. car own-
ership). All car users switch to SAVs. 3) 
the impact of SAVs on a certain type 
of travelers (high income, and long-
time commuter). All travelers who 
spend more than 40 min for one trip 
and belong to the high-income class 
are candidate to use SAVs.

52 Sheppard, C.J.R., Bauer, G.S., 
Gerke, B.F., Greenblatt, J.B., 
Jenn, A.T., & Gopal, A.R

2019 USA (national level) N/A Hypothetical future where SAEVs 
are a dominant mode of transporta-
tion. Price and mobility demand 
exogenously defined. The mobility 
assumptions only cover a typical 
weekday.
Impact of congestion on travel times, 
battery lifetimes and parking costs 
ignored.
The model does not attempt 
to optimize the seating capacity 
of the vehicles.

53 Pöhler, L.D., Asami, Y., & Oguchi, 
T

2019 Izu Oshima, Japan Ν/Α (long-term ABM 
with Dijkstra algorithm)

Neglecting traffic congestion 
and induced traffic.
Assumed fixed hours of departure 
and number of trips for different 
groups of travelers. One conven-
tional vehicle needs to be replaced 
once in the timespan of the simula-
tion of 13 years.

54 Kim, C., Jin, Y.-G., Park, J., & 
Kang, D

2019 Sioux Falls, SD MATSim All commuters used autonomous 
taxis instead of private cars.

55 Simoni, M., Kockelman K.M., 
Gurumurthy, K.M., & Bischoff, J

2019 Austin, TX MATSim Two scenarios are simulated; AVs 
and SAVs, cost of AVs is lower 
than car cost, in AV scenario there 
is one SAV per 30 agents, in SAVs sce-
nario there is one SAV per 10 agents, 
decrease of availability of privately 
owned vehicles to 60%

56 Hörl, S., Ruch, C., Becker, F., 
Frazzoli, E., & Axhausen, K. W

2019 Zurich, Switzerland MaTSim Fleet size, operational policy 
of the fleet, single occupancy taxi 
service, free speed travel time, rebal-
ancing of AVs was disabled
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57 Kamel, J., Vosooghi, R., Puch-
inger, J., Ksontini, F., & Sirin, G

2019 Paris, France MATSim Three scenarios: 1) the transportation 
system without SAVs, 2) SAVs added 
without considering user prefer-
ences, 3) SAVs added, and user pref-
erences are considered. SAVs services 
are only car-share and not the ride-
share. Four main modes for the basic 
scenario are considered (PT, private 
car, walk and bike)

58 Wang, B., Medina, S.A., & 
Fourie, P.J

2019 Waterfront Tanjong 
Pagar area, Singapore

MATSim Four parking strategies: roaming, 
street parking, depot parking (and 
a mixed strategy (combination 
of street and depot parking)
Different levels of PT demand

59 Wang, S., Correia, G. H. de A., & 
Lin, H. X

2020 The Hague, Nether-
lands

AnyLogic dynamic time-dependent demand 
generation and vehicle assignment, 
vehicle platooning and a mesoscopic 
traffic simulator, central operator 
responsible for vehicle assignment, 
route calculation and formation 
of platoons, central operator for vehi-
cle assignment has no knowledge 
about travel requests in advance, Pre-
booking of SAVs is not considered, 
no proactive rebalancing of SAVs

60 Pulhès, A., & Berrada, J 2019 Palaiseau, France MATLAB Different levels of fleet size and pen-
etration rate of AVs were considered; 
fleet size: 10–40 vehicles; two kinds 
of vehicles: 30-seat minibuses & 5 
seat mid-sized cars

61 de Souza, F., Gurumurthy, K.M., 
Auld, J. & Kockelman K.M. (a)

2020 Bloomington, IL POLARIS Three different fleet sizes of 650, 
700, and 750 SAVs were tested with, 
and without, repositioning.

62 Yao, F., Chen, X.(M.), Ange-
loudis P., & Zhang, W

2020a Hangzhou, China N/A (Dijkstra algorithm) The number of charging piles 
is assumed to equal the actual num-
ber of charging piles in the study 
area multiplied by the SAEV market 
penetration rate.

63 de Souza, F., Gurumurthy, K.M., 
Auld, J., & Kockelman, K.M. (b)

2020 Bloomington, IL POLARIS Repositioning decisions are made 
at constant time steps (e.g., every 
5 min).

64 Liu, J., Jones, S., & Adanu, E.K 2020 Chicago, IL N/A SAVs and taxis have the same out-of-
vehicle travel times.
The tolls to be collected are the same 
as taxi services.
SAVs services will be 75%, 100% 
and 125% of non-driver-wage costs 
of taxi services.

65 Gurumurthy, K.M., Kockelman, 
K.M, & Zuniga-Garcia, N

2020 Austin, TX MATSim SAVs costs include a base fare, time-
varying fare, and distance-varying 
fare.
One SAV is available for every 10 
travelers (or approx. every 35 person-
trips), fleet size of 4,500 SAVs.
3 policy scenarios: door-to-door, 
FMFL, and both.



Page 19 of 45Karolemeas et al. European Transport Research Review           (2024) 16:25  

# Author Year Study area Framework Assumptions

66 Zhang, W., & Wang, K 2020 Atlanta, GA N/A (Monte-Carlo method 
Python 2.7)

Consumers are willing to pay an extra 
10% of the current vehicle price
A 10% decline in technology price 
(over time?).
NHTSA’s current and possible 
technology adoptions (e.g., adoption 
of electronic stability control (ESC) 
from year 2015 and connectivity 
from year 2020 on all new vehicles) 
are enacted.

67 Alisoltani, N., Zargayouna, M., & 
Leclercq, L

2020 Lyon, France N/A The cars can have two situations: 
they are either waiting in depots 
for new passengers or they are ser-
vicing the assigned passengers

68 Vosooghi, R., Puchinger, J., 
Bischoff, J., Jankovic, M., & 
Vouillon, A

2020 Rouen Normandie, 
France

MATSim The population of the case study 
area has been downscaled to 10% 
and the network capacity has been 
modified in the performed simula-
tions.
The price of the service is 0.4 Euro 
per kilometer for all scenarios.
The maximum number of stations 
is limited to 12.

69 Yan, H., Kockelman, K.M, & 
Gurumurthy, K.M

2020 Minneapolis–Saint 
Paul, MN

MATSim All trips are made by a SAV here 
to gauge the service based on trip 
demand and fleet parking restric-
tions.
When SAVs are allowed to park 
on curbs, there is no impact on traffic 
flow.
All SAVs remain at the curb 
where they dropped off their 
passenger(s) in most scenarios.
When considering parking availabil-
ity in lots, each parking lot in a sce-
nario has equal capacity that totals 
to accommodate 80% of the fleet.

70 Al Maghraoui, O., Vosooghi, 
R., Mourad, A., Kamel, J., Puch-
inger, J., Vallet, F., & Yannou, B

2020 Paris, France MATSim Two types of SAV services: 1) 
individual-rides, and 2) ridesharing. 
2000 standard 4-seats SAVs have 
been integrated into the simulations. 
The service cost is considered to be 
0.48 €/km for individual-rides and 0.4 
€/km for ridesharing.

71 Lokhandwala, M., & Cai, H. (a) 2020 New York City, NY N/A A known total budget is available 
to develop the charging infrastruc-
ture.
No charging stations in the first 
phase; the model starts with existing 
charging infrastructure.
For all next phases, all charging 
stations in the previous ones will 
continue their service.
Lifetime of charging stations longer 
than the time horizon of the model.
Same charging rate for all stations.
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72 Zhang, T.Z., Chen, T.D 2020 Seattle metropolitan 
region, WA

N/A Trip patterns from the Puget Sound 
Regional Council (PSRC) Regional 
Travel Demand Model, reflecting 
local travel demand.
Time of use (TOU) pricing rates 
from Seattle City Light and simulated 
real-time pricing (RTP) environments 
using locational marginal price (LMP) 
data. Renewable energy sources 
(RES), specifically photovoltaic (PV) 
generation, were modeled using 
data from the National Renewable 
Energy Laboratory (NREL).
Two types of EVs (short range [SR] 
and long range [LR]) and two types 
of charging infrastructure (level 2 
[LV2] and DC fast chargers [FC])

73 Lokhandwala, M., & Cai, H. (b) 2020 New York City, NY N/A Five rider types (unwilling to pool 
a ride, prefer not to pool, indiffer-
ent to pooling, prefer to pool, will 
only accept a pooled ride).
All types distributed evenly 
among all the riders using the sys-
tem.

74 Oh, S., Seshadri, R., Azevedo, 
C.L., Kumar, N., Basak, K., & Ben-
Akiva, M.E

2020 Singapore SimMobility The baseline scenario consists of all 
existing modes, which are Car, Car-
pooling, Bus, Rail, Private bus, Taxi, 
MOD Single/Shared, and Walk.
The price of a shared AMoD taxi 
is assumed to be 75% that of a 
single-ride AMoD taxi.
Utilization is close to 100% dur-
ing the peak period, request satisfac-
tion rates are close to 100% and wait-
ing times are sufficiently low.

75 Nahmias-Biran, B., Oke, J.B., 
Kumar, N., Lima Azevedo, C., & 
Ben-Akiva, M.E

2020 Singapore (virtual city) SimMobility The following AMoD modes were 
added in addition to existing modes: 
(1) AMoD as a single ride, (2) AMoD 
as a shared ride, (3) AMoD as a first/
last connector to Mass Rapid Transit 
(MRT) stations, (4) AMoD as a first/
last connector to MRT stations 
as a shared ride. In the near future 
scenario, AVs operate only in the 
Central Business District. In the long-
term scenario, all mobility-on-
demand services will be operated 
by an automated fleet city-wide. 
MoD modes and traditional taxis will 
no longer be available.

76 Venkatraman, P., & Levin, M 2021 Sioux Falls, SD N/A (Tabu Search heu-
ristic)

A SAV serves only one traveler 
at any time. SAVs routing prob-
lem with static demand, travelers 
with a desired departure time, with-
out a time window for arrival.
Each traveler has a desired time 
of departure from his origin and does 
not have a constrained time of arrival 
at his destination.
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77 Gurumurthy, K.M., Kockelman, 
K.M., & Auld, J

2021 Chicago, IL POLARIS Maximum response time, which 
30 min. SAVs operate on the roadway 
like traditional ride sourced vehicles.
All travelers were willing to share 
rides if using the SAVs fleet. Four 
scenarios were proposed with three 
distinct geofences, and one with-
out a fence for baseline comparison.

78 Chouaki, T. & Puchinger, J 2021 Paris-Saclay, France SUMO 6 scenarios in an incremental man-
ner, from a fixed schedule bus service 
to a complex one mixing demand 
responsive buses and robo-taxis. 
In all these scenarios, conventional 
vehicles are not considered.

79 Zwick, F., Kuehnel, N., Moeckel, 
R., & Axhausen, K.W

2021 Munich, Germany MATSim Two mode choice scenarios, one 
substituting all car trips by ride-
pooling, another one with free mode 
choice.
The public transport network is fairly 
optimized for the current PT system.
The vehicles operate 24 h.
In the second scenario, most people 
would probably not use another 
mode from/to the boundary 
of the study area and change from/to 
ride-pooling if it is not enforced.

80 Bucchiarone, A., De Sanctis, M., 
& Bencomo, N

2021 Trento, Italy N/A Scenarios: (i) each user is assigned 
a different working place, mean-
ing that diversified and mainly non 
overlapping travel destinations are 
considered; (ii) each user is assigned 
one of the only two available work-
ing places; (iii) each user is assigned 
the same unique working place.
The cost for the service is of 1 Euro/
Km.

81 Mo, B., Cao, Z., Zhang, H., Shen, 
Y., & Zhao, J

2021 Tampines, Singapore N/A Five regulation scenarios: four 
with constrained competition 
while the other one focuses 
on unconstrained competition 
to find the Nash Equilibrium.
Other important regulation aspects, 
such as service fare, pricing, and bus 
routes, are fixed in all scenarios.
Before AV entering the market, 
walking, bus, and ride-hailing 
are the only travel modes avail-
able for the first-mile trips. After AV 
emerges, ride-hailing will be replaced 
by the AMoD.
Signal system and driving behavior 
not considered.

82 Yao, F., Zhu, J., Yu, J., Chen, C., & 
Chen, X. (M)

2020b Hangzhou, China implemented in Go Maximum waiting tolerance of pas-
sengers is 30 min.
The time interval for passengers 
to get on and off the vehicle is 40 s.
Routing results are calculated based 
on the static shortest path algorithm.
Either HVs or AVs pick up one pas-
senger at one time in the hybrid 
ride-hailing market.
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83 Kang, D., & Levin, M 2021 Sioux Falls, SD implemented in Java Central SAVs dispatcher.
Passengers are willing to be picked 
up instantaneously after sending 
out a request.
Parking space unlimited.
Passengers are assumed to wait 
until picked up by a SAV.
We assume that each SAV serves 
one passenger request at a time, 
unlike ridesharing studies.

84 Javanshour, F., Dia, H., & 
Duncan, G

2021 Melbourne, Australia Commuter AV market penetration would be 
10% and that remaining trips will 
continue to rely on conventional 
privately-owned vehicles.
Services are station-based in which 
each centroid has a station 
with shared AVs to service customers.
People need to walk a distance 
from their residences to the AMoD 
station. All trips were assumed to be 
one-way between origins and des-
tinations.
Passenger waiting time threshold 
was assumed 15 min.

85 Winter, K., Cats, O., Martens, K., 
& van Arem, B

2021 Amsterdam, Nether-
lands

MATSim Three strategies (heuristics): Demand 
Anticipation, Supply Anticipation, 
Demand–Supply DefIcit Minimiza-
tion
In the third strategy, open requests 
are dispatched to idle vehicles 
located within the same zone. SAVs 
and private cars share the same road 
infrastructure. SAVs are operated 
as a centrally dispatched fleet.
Car-pooling is not considered.

86 Zhang, W., & Guhathakurta, S 2021 Atlanta, GA implemented in Python Fifty rounds of warm-up simulation 
runs suggest:
Approximately 367,160 vehicles will 
be sufficient to serve ten-county 
travel demand to ensure that more 
than 99 percent of the clients can 
be picked up within fifteen minutes 
after calling for services.
The average waiting time is 7.13 min 
on a daily basis. The average waiting 
time increases to 10.59 during even-
ing peak hours.
Each SAV can serve around 24.5 trips 
on a daily basis.

87 Ahadi, R., Ketter, W., Collins, J., 
& Daina, N

2021 Berlin, Germany N/A Charging demand must be covered 
fully by installing charging stations 
(CSs).
All CSs and SAEVs are homogeneous.
Grid constraints are considered 
as a limit on the number of chargers 
for each zone in the optimization 
part.
Land costs and grid constraints vary 
across the service region.
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88 Zhou, Y., Sato, H., & Yamamoto, 
T

2021 Kozoji, Japan Artisoc Two vehicle dispatching strategies: 
initial dispatching and redispatching.
All vehicles in the fleet comprise two 
seats.
Level of service mainly defined 
by the wait time.
Three experimental scenarios, 
namely the high-speed, low-speed, 
and no-sharing ride scenarios.

89 Zhou, M., Le, D., Nguyen-
Phuoc, D.Q., Zegras, P.C., & 
Ferreira, J

2021 Singapore SimMobility Service operation: door-to-door ser-
vice or as a feeder to the rail transit 
system.
Pricing: Single ride: 75% of that of 
conventional taxis / Shared ride: 70% 
of single-ride service’s price (or 52.5% 
of that of conventional taxis).
Level of service: waiting time 
and access time are both specified 
the same as taxis and MOD services, 
which are assumed to be 5 min 
for both door-to-door and feeder 
services.
Fleet: assumed to consist of a combi-
nation of 4- and 6-seaters

90 Oh, S., Lentzakis, A.F., Seshadri, 
R., & Ben-Akiva, M.E

2021 Singapore SimMobility Three scenarios are considered 
about the price or fare of the AMoD 
services:
AMoD single-ride price: 75%, 100% 
and 125% of taxis & AMOD shared-
ride price: 75% of single-ride.
AMoD fleet is fully composed 
of battery electric vehicles (BEV) 
and the other vehicle categories are 
composed of gasoline/diesel-fueled 
vehicles

91 Hörl, S., Becker, F., & Axhausen, 
K.W

2021 Zurich, Switzerland MATSim The service region: Only jour-
neys that begin and conclude 
within the service area’s geographic 
bounds are eligible for the AMoD 
service.
The minimum distance requirement: 
Trips shorter than 0.25 km in Euclid-
ean distance between the origin 
and destination coordinates are 
not supported by the AMoD mode.
The maximum waiting time con-
straint: Trips with an anticipated wait-
ing time of over 15 min will not be 
provided with AMoD as an alterna-
tive mode of transportation.

92 Ishibashi, Y., & Akiyama, E 2022 Tokyo, Japan MATSim Time spent trave ling by SAVs 
has no effect on the agent’s utility. 
Maximum possible waiting time 
at 20 min, fixed when boarding 
and alighting times for passengers.
Fixed walking and bicycling travel 
speeds, and distance traveled.

93 Gurumurthy, K.M., & Kockel-
man, K.M

2022 Bloomington, IL POLARIS All trips choosing to use a SAV/
TNC are currently single-party trips. 
All travelers opting to use the fleet 
are willing to share. Α proportional 
increase in network capacity 
is also assumed for certain scenarios.
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94 Dean, M.D., Gurumurthy, K.M., 
de Souza, F., Auld, J., & Kockel-
man K.M

2022 Austin, TX POLARIS Time step of 15 min to react to zonal 
demand.
Taxi and ride-sourcing vehicles were 
estimated as SAEVs in the mode 
choice model, with assumed fare 
components.

95 Wang, S., Correia, G.H., & Lin, 
H.X

2022 Hague, Netherlands AnyLogic All travel demand is produced 
and attracted between what have 
been designated as service points 
which are connected to the net-
work nodes. Vehicles wait at service 
points to form platoons instead 
of using slow-down and catch-up 
strategies. There are enough parking 
places for SAEVs to form a platoon 
at the service points. AMoD services 
are used to serve all private car trips 
in an urban area.

96 Ben-Dor, G., Ogulenko, A., 
Klein, I., & Benenson, I

2022 Jerusalem, Israel MATSim Various congestion and parking 
pricing schemes and active SAV 
fleets of different sizes (250–1,000 
vehicles) are simulated. The SAV 
service to the trips between the cen-
tral and the outer area; at least one 
SAV’s origin or destination should be 
in the center. The price of the SAV trip 
is set equal to that of the PT.

97 Stevens, M., Correia, G.H., 
Scheltes, A., & van Arem, B

2022 Rotterdam, the Neth-
erlands

AnyLogic The AMoD service is used only as a 
first- and last-mile mode in a multi-
modal public transport trip
Ride pooling is only possible 
when the required detour to pick 
up the second passenger is smaller 
than 25% of the direct travel time 
of the traveler that has been picked 
up first.
The charging facilities are located 
at the PT station and their location 
is fixed. The number of chargers 
required is not fixed and depends 
on the charging demand. Both fast 
and slow charging strategies are 
tested.

98 Nahmias-Biran, B., Dadashev, 
G., & Levi, Y

2022 Tel Aviv, Israel SimMobility (with Aimsun 
Next)

AMoD services are introduced 
in replacement of MoD at a discount 
from regular taxi fares.
6 cost reduction scenarios were con-
sidered: 30%, 40%, 50%, 60%, 70% 
and 80% discount from taxi fares.
The AMoD service will offer both sin-
gle and shared ride (pooling) options 
to enable further reduction in fares 
and in energy consumption.
Travel time in AMoD Pool includes 
the waiting time for passen-
gers (5 min for each passenger) 
and the extra time for pickup 
and drop-offs (3 min for each pickup/
drop-off ).
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Appendix B
Results

# Author Year Study area Results

1 Fagnant D. & Kockelman K 2014 Hypothetical city A system of SAVs may save members ten 
times the number of cars they would 
need for self-owned personal-vehicle 
travel, but would induce about 11% 
more travel

2 ITF 2015 Lisbon, Portugal Shared self-driving fleets have the poten-
tial to drastically reduce the number 
of vehicles necessary to deliver the same 
travel as today’s fleet (approx. 10%).
The overall volume of car travel will 
likely increase (6% more car-kilometers 
travelled than today)
Reduced parking needs will free up sig-
nificant public and private space

3 Zhang W., Guhathakurta S., Fang 
J. & Zhang G

2015a Hypothetical city It would be able to eliminate up to 90% 
of parking demand for clients who adopt 
the system, at a low market penetration 
rate of 2%.
Different SAVs operation strategies 
and client’s preferences may lead 
to different spatial distribution of urban 
parking demand.

4 Fagnant D., Kockelman K. & 
Bansal P

2015 Austin, TX Each SAV can replace around 9 conven-
tional vehicles within the study area 
while still maintaining a reasonable level 
of service. 8 percent more vehicle-miles 
traveled (VMT) may be generated

5 Kim, K.-H., Yook, D.-H., Ko, Y.-S., & 
Kim D.-H

2015 Seoul, South Korea The full integration of autonomous 
vehicles in the urban road environment 
is expected to lead to more dispersed 
spatial structure

6 Zhang W., Guhathakurta S., Fang 
J. & Zhang G

2015b Hypothetical city A DR-SAV system can provide more 
satisfactory level of service compared 
with an NR-SAV system, in terms 
of shorter trip delays, more reliable 
services (especially during peak hours), 
less VMT generation, and less trip costs. 
Moreover it is demonstrated that a DR-
SAV system can be more environment-
friendly in the long run

7 Azevedo, C.L 2015 Singapore The average waiting time decreases 
with the increase in the fleet size, and it 
is equal to 5 min when AMoD fleet size 
is around 2200 vehicles.
Further increase in the fleet size 
is not able to significantly decrease 
the waiting time.

8 Shen, W., & Lopes, C 2015 New York City, NY The proposed algorithm improves pas-
sengers’ experience by reducing the aver-
age passenger waiting time by up to 
29.82% and increasing the trip success 
rate by up to 7.65%.
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# Author Year Study area Results

9 Marczuk, K.A., Hong, H.S., 
Azevedo, C.L., Adnan, M., Pendle-
ton, S., Frazzoli, E., & Lee, D

2015 Singapore In both station-based and free-floating 
models, increasing the vehicle fleet size 
resulted in an increase in the number 
of passengers served.
The free-floating model was able to serve 
90% of the demand, while the station-
based model 68%.
Increasing the AMoD fleet size resulted 
in a fall in waiting times. With 20 
initial stations, the median waiting 
time decreased from 20.74 to 1.80 min 
as the fleet size grew from 2000 to 7500.

10 Bosch, P., Ciari, F., & Axhausen, 
K.W

2016 Zurich, Switzerland For a given fleet performance target, 
the relationship between served demand 
and required fleet size is non-linear 
and the ratio increases as demand 
increases.
If waiting times of up to 10 min are 
accepted, a reduction of up to 90% 
of the total vehicle fleet can be possible 
even without active fleet management 
like vehicle redistribution

11 Chen, D., Kockelman, K.M., & 
Hanna, J

2016 Hypothetical city (Austin) Fleet size is sensitive to battery recharge 
time and vehicle range, with each 
80-mile range SAEV replacing 3.7 pri-
vately owned vehicles and each 200-mile 
range SAEV replacing 5.5 privately owned 
vehicles.
Each SAEV replace 5 to 9 privately owned 
vehicles

12 Marczuk, K., Soh, H., & Azevedo, 
C.L

2016 Singapore Rebalancing reduces the required fleet 
size and shortens the customers’ wait 
time.
We observe a decrease in waiting time 
with the increase in the fleet size.

13 Hörl, S., Erath, A., & Axhausen, 
K.W

2016 Sioux Falls, SD Even under conservative pricing a large 
share of travelers is attracted by autono-
mous vehicles, though it is highly 
depended on the provided fleet size.
For sufficiently large supplies, the vehicle 
miles travelled of autonomous single-
passenger taxis, increase up to 60%.

14 Bischoff, J., & Maciejewski, M 2016 Berlin, Germany A fleet of 100.000 vehicles will be 
enough to replace the car fleet in Berlin 
at a high service quality for customers. 
One autonomous taxi could replace 
the demand served by ten conventional 
vehicles in Berlin.

15 Chen, D., & Kockelman, K.M 2016 Hypothetical city (Austin, 
TX)

The mode share of SAEVs in the simu-
lated city is predicted to lie between 14 
and 39%, when competing against pri-
vately-owned, manually driven vehicles 
and city bus service.
Pricing strategies that attempt to balance 
available SAEV supply with anticipated 
trip demand can decrease average wait 
times by 19 to 23%.
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16 Fagnant, D.J., & Kockelman, K.M 2016 Austin, TX Dynamic ride sharing reduces total 
service times and travel costs for SAVs 
users, even after accounting for extra 
passenger pick-ups, drop-offs and non-
direct routings.
A private fleet operator paying 70,000 
per new SAV could earn a 19% annual 
(long-term) return on investment 
while offering SAVs services at $1.00 
per mile of a non-shared trip.

17 Hörl, S 2017 Sioux Falls, SD The overall mode share for the Taxi 
operator is higher than for the Pool 
operator at peak and off-peak hours.
The Taxi service performs better regard-
ing travel times throughout the day.
The simulated Pool operator has a com-
petitive advantage due to the low 
price, but realistically this would not be 
economical.
In the combined case, while the Taxi 
service is favoured at peak times, the Pool 
service attracts the larger share of cus-
tomers at off-peak hours.

18 Merlin, L 2017 Ann Arbor, MI The automated shared-ride taxi transit 
service could provide a higher level 
of service at lower cost and lower carbon 
emissions than the current bus system
An automated taxi service without ride-
sharing would provide high levels 
of service at lower cost, but with higher 
levels of carbon emissions than the cur-
rent bus system.
Ridesharing is essential to obtaining 
the full cost savings and environmental 
benefits for an automated taxi system.
Both automated taxi systems would 
likely increase peak-hour congestion 
by increasing peak-hour vehicle kilom-
eters traveled.

19 Auld, J., Sokolov, V., & Stephens, T 2017 Chicago, IL Changes in capacity increase overall 
VMT, although only to a small degree, 
with about 4% induced additional VMT 
for an 80% increase in capacity.
The elasticity of VMT with respect 
to capacity of 0.05 is in line with values 
reported in the literature.
Changes in travel time cost, or the value 
of travel time savings, have a significant 
effect, especially at very low levels 
of VOTT, increasing VMT by up to 59%, 
while average travel time increases 
from about 20 min to more than 70 min.

20 Liu, J., Kockelman, K.M., Bosch, P., 
& Ciari, F

2017 Austin, TX Higher fare rates allow for greater vehicle 
replacement (ranging from 5.6 to 7.7 HVs 
per SAV).
Empty vehicle miles traveled by the fleet 
of SAVs ranged from 7.8 percent to 14.2 
percent.
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21 Llorca, C., Moreno, A., & Moeckel, 
R

2017 Munich, Germany The total travelled distance and the travel 
time for both autonomous and conven-
tional trips increased when autonomous 
vehicles fleets are operating.
Congestion levels in the peak hour were 
reduced.
It was possible to replace three con-
ventional cars with one autonomous 
taxi while satisfying the travel demand 
with reasonable waiting times.

22 Martinez, L., & Viegas, J.M 2017 Lisbon, Portugal A full implementation scenario 
where the existing metro service is kept 
and private car, bus and taxi mobility 
would be replaced by shared modes 
would significantly reduce travelled 
vehicle-kilometres and CO2 emissions.

23 Dia, H. & Javanshour, F 2017 Melbourne, Australia Significant reduction in both the 
number of vehicles required to meet 
the transport needs of the community, 
and the required on-street parking space.
This reduction in both the number 
of vehicles was achieved at the expense 
of a less significant increase in the total 
VKT.

24 Jäger, B., Agua, F.M.M., & Lien-
kamp, M

2017 Munich, Germany The feasibility of operating a shared 
autonomous vehicle fleet with both high 
service levels and vehicle utilization 
is confirmed.

25 Scheltes, A., & De Almeida Cor-
reia, G.H

2017 Delft, Netherlands The automated last-mile transport 
system was only able to compete 
with the walking mode, additional meas-
ures were needed for the system to be 
competitive with cycling.
Relocating empty vehicles or allowing 
pre-booking reduced average waiting 
time.
Allowing passengers to drive at a higher 
speed reduced average travel time.
Reducing system capacity increased 
in energy use.

26 Hao, M., & Yamamoto, T 2017 Nagoya, Japan 20 to 30% of trips are served by SAVs, 
and that 50 to 70% of the vehicles 
provided by households are sufficient 
to serve the demand without significant 
waiting time.
Young generation, car owners and fre-
quent car users are less likely to get rid 
of their car and just use SAVs.
People who take part-time jobs are more 
likely to give away their personal vehicle

27 Heilig, M., Hilgert, T., Kagerbauer, 
M., & Vortisch, P

2017 Stutgart Region, Germany About 45% of all vehicle movements 
and 20% of all vehicle kilometers could 
be saved.
About 85% of all vehicles in the Stuttgart 
region might be dispensable

28 Basu, R., Araldo, A., Akkinepally, A. 
P., Nahmias Biran, B. H., Basak, K., 
Seshadri, R., & Ben-Akiva, M

2018 Hypothetical city (with 
patterns observed in Sin-
gapore)

Without mass (public) transit, congestion 
seems to intensify.
Mass (public) transit has a fundamental 
role, despite the high efficiency of AMoD, 
when aiming to avoid congestion 
and maintain acceptable levels of service.
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29 Karamanis, R., Angeloudis, P., 
Sivakumar, A. & Stettler M,

2018 London, UK In monopoly, dynamic pricing provides 
higher revenues than static pricing 
at non-peak hours. In competition, 
dynamic pricing is superior at peak 
hours where increased waiting times are 
observed. In both market structures, 
shared trips are more popular in dynamic 
pricing compared to static pricing.

30 Harper C., Hendrickson C., & 
Samaras C

2018 Seattle, WA As AV penetration rates increase, park-
ing lot revenues decrease significantly 
and could likely decline to the point 
where operating a lot is unsustainable 
economically, if no parking-demand 
management policies are implemented.

31 Lu, M., Taiebat, M., Xu, M. & Hsu, 
S.-C

2018 Ann Arbor, MI For meeting daily commute demand, 
the optimized autonomous taxi fleet size 
is only 20% of the conventional solo-
commuting personal car fleet.
Commuting cost decreases by 38% 
when using internal combustion engine 
a Taxis,
Energy consumption, greenhouse gas 
emissions, and SO2 emissions are higher 
than conventional solo commuting, 
mainly because of unoccupied reposi-
tioning between trips.
The environmental impacts of electric 
aTaxis do not show significant improve-
ment over conventional vehicles.

32 Liu, Z., Miwa, T., Zeng, W., & 
Morikawa, T

2018 Sioux Falls, SD The non-detour and detour sharing strat-
egies can respectively reduce fleet size 
by 19% and 27%, reduce waiting time 
by 62% and 82%, reduce operational 
costs by 16% and 24%, and reduce CO2 
emissions by 17% and 19% in compari-
son with a non-sharing strategy

33 Lokhandwalaa, M., & Cai, H 2018 New York City, NY Switching from traditional taxis to shared 
autonomous taxis can potentially reduce 
the fleet size by 59% while maintaining 
the service level.
Ride sharing increases occupancy rate 
(from 1.2 to 3), decreases total travel 
distance (up to 55%), and reduces carbon 
emissions (up to 866 metric tonnes 
per day).

34 Wang, B., Ordonez Medina, S.A., 
& Fourie, P

2018 Sioux Falls, SD During the peak hour, around 240—
250 vehicles are needed to satisfy 
the demand while during the off-peak 
hour, only around 30 vehicles are in use.
More than 90% of total trips share rides, 
and more than 40% of total trips are 
with high occupancy (more than 6 pas-
sengers during the trip).
In both morning and afternoon peak, 
the spatial distribution of initial vehicle 
position is close to travel demand.

35 Javanshour, F., Dia, H., & Duncan, 
G

2018 Melbourne, Australia An AMoD system could reduce the cur-
rent fleet size by 84% while meeting 
the same travel demand.
The increase in VKT is significant (around 
77% for scenarios where the vehicles are 
used in car-sharing systems, and 29% 
for vehicles used as ride-sharing systems).
A strong quadratic relationship 
between AMoD fleet size and VKT exists
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36 Cyganski R., Heinrichs M., Von 
Schmidt, A., & Krajzewicz, D

2018 Brunswick, Melbourne, 
Australia

Only minor changes in the modal split 
and the number of rides for the city 
of Brunswick due to the relatively small 
travel distances prevailing

37 Shen, Y., Zhang, H. & Zhao, J 2018 Singapore The proposed integrated system 
has the potential of enhancing service 
quality, occupying fewer road resources, 
being financially sustainable, and utilizing 
bus services more efficiently

38 Hyland, M., & Mahmassani, H.S 2018 N/A Optimization-based AV-traveler assign-
ment strategies allow en-route pickup 
AVs to be diverted to new traveler 
requests
Strategies that incorporate en-route 
drop-off AVs in the assignment problem, 
reduce fleet miles and decrease traveler 
wait times
More-sophisticated AV-traveler assign-
ment strategies improve operational 
efficiency when fleet utilization is high
The spatial distribution of traveler 
requests significantly impacts the empty 
fleet miles generated.

39 Farhan, J., & Chen, T. D 2018 Hypothetical city 
(100 × 100 mile)

Allowing multiple occupants improves 
service rate as well as system-wide ben-
efits from $1.34 M to $1.52 M.
Ridesharing decreases fleet size 
and the number of charging stations.
Compared to traditional ride-hailing 
service, with ridesharing, the fleet size 
and the number of charging stations 
reduce.

40 Wen, J., Chen, Y. X., Nassir, N., & 
Zhao, J

2018 N/A (spread out residential 
area)

The trade-off between the level of ser-
vice and the operational cost, provides 
insight for fleet sizing to reach the opti-
mal balance.
The encouragement of rideshar-
ing, that allows in-advance requests, 
and combines fare with transit, could 
facilitate service integration and sustain-
able travel.

41 Bosch, P., Ciari, F., & Axhausen, 
K.W

2018 Zug, Switzerland Considering the existing spatial distri-
bution of the demand and the exist-
ing transport system, AV systems are 
solely capable of decreasing travel 
times at the cost of substantial mode 
shifts and additional vehicle kilometers 
driven. Among the tested policy meas-
ures, even though all indicated causality, 
only the organizational form of the AV 
service demonstrated a statistically 
significant effect.
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42 Nahmias-Biran, B., Oke, J.B., 
Kumar, N., Basak, K., Araldo, A., 
Seshadri, R., Akkinepally, A.P., 
Lima Azevedo, C., & Ben-Akiva, 
M.E

2019 Singapore In the ‘‘AMoD only’’ scenario, where AMoD 
services are offered as a substitute for tra-
ditional MoD services, we see a signifi-
cant reduction in PT mode share of more 
than 6%, with a shift toward AMoD, 
which consists of 13.2%.
In the AMoD case, the fleet is more effi-
ciently managed, as they are introduced 
incrementally, while MoD drivers are 
introduced according to their shift start-
ing time.
The shared requests experience higher 
waiting times.
The increase in fleet size is clearly ben-
eficial for non-shared requests, while its 
impact is less pronounced for the shared.

43 Kim, C., Jin, Y.-G., Park, J., & Kang, 
D

2019 Sejong, South Korea Minibuses did not replace the trunk 
traffic, and the minibus service should be 
used as an auxiliary for the trunk traffic.
The minibus service increased the public 
transport mode share by 3–5%.

44 Zhou, Y., Li, Y., Hao, M., & Yama-
moto, T

2019 Nagoya, Japan In the residential area, approximately 400 
shared autonomous vehicles can facili-
tate more than 10,000 trips at an appro-
priate level of service. For the commuter 
town, fewer than 400 vehicles can 
provide rapid responses with a wait time 
of approx. 5 min for more than 5000 trips 
per day.

45 Li, L., Lin, D., Pantelidis, T., Chow, 
J., & Jabari, S. E

2019 Brooklyn, NY Improvements in performance 
of an SAEV system with en route reloca-
tion when compared to no relocation, 
in terms of reductions in average waiting 
times and lost customers.
Lost customers, average waiting 
times and average waiting customers all 
decrease with an increase in fleet size.

46 Gurumurthy, K.M., Kockelman, 
K.M., & Simoni, M

2019 Austin, TX The cost-effectiveness of traveling 
with strangers overcomes inconvenience 
and privacy issues at moderate-to-low 
fare levels.
A moderately sized fleet (one SAV 
for every 25 people) serves nearly 30% 
of all trips made during the day.
This same fleet performs better 
when road pricing is enforced in the peak 
periods, moderating VMT by 2%, increas-
ing SAVs demand and in turn fleet-man-
ager revenue

47 Ben-Dor, G., Ben-Elia, E., & Ben-
enson, I

2019 Tel Aviv, Israel Fleets of 50-150 K vehicles could well 
serve the entire intra-metropolitan travel 
demand, with an average occupancy 
of ~ 2 compared to 1.1 passengers 
per vehicle today.
Minimal fleet size of 50 K SAVs is suf-
ficient for serving Tel Aviv Metropolitan 
Area users’ activities but carries a high 
level of daily rejections 6%.
A larger fleet does not seem to improve 
the level of service significantly.
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48 Luo, L., Troncoso Parady G., 
Takami, K., & Harata, N

2019 Gunma, Japan SAVs share increases with the fleet size 
in general. Most scenarios indicate a con-
siderable market penetration for SAVs 
given relatively optimistic settings.
Average passenger waiting time in all 
scenarios falls in an acceptable range.
Fleet average served requests and aver-
age inactive ratio suggest supply 
efficiency for the whole fleet, which 
increases with size.
An increase in total VKT observed 
with the SAVs introduction, while acces-
sibility increases.

49 Wang, S., Correia, G. H. de A., & 
Lin, H. X

2019 Hypothetical urban area SAVs systems together with dynamic 
ridesharing can significantly reduce 
average waiting time, VKT and empty 
SAVs trips.
The proposed vehicle assignment 
algorithm can reduce the empty VKT 
for the pickups for all tested SAVs systems 
up to about 40% and improve the system 
capacity.
The tailored time-varying transit service 
system, compared with the parallel tran-
sit service systems, can achieve a similar 
system performance in terms of average 
waiting time, service time and system 
capacity.

50 Loeb, B., & Kockelman, K.M 2019 Austin, TX The gasoline hybrid-electric (HEV) 
fleet performed better than EV fleets, 
while remaining more profitable, provid-
ing response times of 4.5 min compared 
to 5.5 min.
The HEV fleet is the more profitable 
option until the cost of gasoline exceeds 
$10 per gallon or the cost of a long-range 
EV falls below $16,000.
Of all the EVs studied, the long-range 
fast-charging scenario provides the best 
service and is the most profitable.

51 Hamadneh, J., & Esztergár-Kiss, D 2019 Budapest, Hungary 1 SAV can replace 8 conventional vehicles 
with acceptable average waiting time 
and usage of 4-seats (shared trip).
Travel time decreased by 17% 
and the travel distance decreased by 20% 
after 100 iterations performed.
The long commuter and high-income 
travelers can be served by 20 SAVs 
with waiting time of 10 min and trip 
duration of 20 min. In this case 1 SAV can 
replace 6 conventional vehicles.

52 Sheppard, C.J.R., Bauer, G.S., 
Gerke, B.F., Greenblatt, J.B., Jenn, 
A.T., & Gopal, A.R

2019 USA (national level) If all U.S. mobility was satisfied by SAEVs 
with a sharing factor of 1.5, a fleet 
of only 12.5 million vehicles and 2.4 
million charge points would be required, 
consuming 1,142 GWh of energy per day 
(or 8.5% of daily U.S. electricity demand) 
with a peak load of 76.7 GW (or 11% 
of the U.S. non-coincident peak) at a cost 
of $ 0.27/mi.
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53 Pöhler, L.D., Asami, Y., & Oguchi, T 2019 Izu Oshima, Japan In all three land use policies as possible 
scenarios of future settlement, the AMoD 
is cheaper than the conventional trans-
portation system.
The land use policies have a stronger 
impact on the AMoD system in reducing 
the total costs than the conventional 
system.

54 Kim, C., Jin, Y.-G., Park, J., & Kang, 
D

2019 Sioux Falls, SD Many commuters could not depart 
at the desired time and had to adjust.
A travel reservation system or a dynamic 
pricing system will be required 
before autonomous taxis become 
popular.

55 Simoni, M., Kockelman K.M., 
Gurumurthy, K.M., & Bischoff, J

2019 Austin, TX All pricing strategies reduce congestion. 
However, their social welfare impacts 
differ in meaningful ways.
More advanced strategies perform better 
in terms of traffic conditions and traveler 
welfare.
The possibility to refund users by rein-
vesting toll revenues as traveler budgets 
plays a salient role in the overall effi-
ciency of each strategy as well as in the 
public acceptability.

56 Hörl, S., Ruch, C., Becker, F., Fraz-
zoli, E., & Axhausen, K. W

2019 Zurich, Switzerland The choice of fleet operational policy 
determines customer-vehicle assignment 
and repositioning of empty vehicles 
(rebalancing) heavily influences system 
performance, e.g., wait times and cost.

57 Kamel, J., Vosooghi, R., Puchinger, 
J., Ksontini, F., & Sirin, G

2019 Paris, France Neglecting user preferences in multi-
agent simulations can significantly 
change the outputs for future scenarios. 
Specifically, SAVs modal shares are 
estimated to be 5.3% without, and 3.8% 
with introducing preferences. The overall 
modal split of the SAVs after introduction 
of user preferences decreases by 28%, 
the use of this mode decreases by 38% 
among the travelers.
Demographic structure plays an impor-
tant role regarding the use of SAVs.

58 Wang, B., Medina, S.A., & Fourie, 
P.J

2019 Waterfront Tanjong Pagar 
area, Singapore

The in-vehicle travel time of most strate-
gies increases with more demand.
The increment of high demand sce-
narios is within 10 s, which is tolerable 
for a 10-min trip.
Agents travel longer with the road strat-
egy due to more congestion and spend 
less in-vehicle time when vehicles park 
inside depot.
The ATOD system with a fixed fleet size 
was found to be flexible and robust 
enough to serve from 70 to 130% of nor-
mal demand with an acceptable level 
of service.
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59 Wang, S., Correia, G. H. de A., & 
Lin, H. X

2020 The Hague, Netherlands - The impact of vehicle assignment strat-
egies in the AMoD system with vehicle 
platooning formation predominately 
affects the average waiting time and sys-
tem capacity to transport travelers 
as a whole.
- However, vehicle platooning, to some 
extent, could lengthen the travel time 
of platoon vehicles.
- The hold-on time of leading vehicles 
in order to form a platoon could affect 
the average time delay of vehicles part 
of those platoons.

60 Pulhès, A., & Berrada, J 2019 Palaiseau, France Dispatcher based vehicle assignment 
is clearly beneficial for users and opera-
tors but restrictive for drivers.
A service with large-capacity vehicles 
is less efficient than a fleet of 5-seat 
vehicles, even in a network with high 
demand and limited station numbers.
With a sufficient number of vehicles, 
an acceptable maximal waiting time 
value is achieved.

61 de Souza, F., Gurumurthy, K.M., 
Auld, J. & Kockelman K.M. (a)

2020 Bloomington, IL On average, the wait times were lower 
with repositioning for all adequate fleet 
sizes.
With repositioning enabled, a higher 
share of demands were served.

62 Yao, F., Chen, X. (M.), Angeloudis 
P., & Zhang, W

2020a Hangzhou, China Platform’s daily revenue is approx. four 
times as the daily system operation costs, 
therefore it can operate at a satisfactory 
level of profit.
The simulated average waiting time 
of clients is 6.8 min (close to the empiri-
cal waiting time).

63 de Souza, F., Gurumurthy, K.M., 
Auld, J., & Kockelman, K.M. (b)

2020 Bloomington, IL On average, the wait times were 
around 20% lower with repositioning 
for all adequate fleet sizes. In addition, 
enabling repositioning led to a higher 
share of demands being served.
These benefits are achieved 
at the expense of 6% added vehicles 
miles traveled.

64 Liu, J., Jones, S., & Adanu, E.K 2020 Chicago, IL SAVs may attract more users than con-
ventional taxis due to reduced driver 
costs.
Lower SAVs speeds can cause longer 
travel times and increase the time-associ-
ated travel costs. However, the influence 
of non-wage cost is clear.
If the travel demand and SAVs speed 
are held constant, the required fleet size 
decreases with increase in tolerate wait-
ing times.
SAVs could serve over 85% of trips if SAVs 
services remove all driver-wage cost 
in taxi services.
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65 Gurumurthy, K.M., Kockelman, 
K.M, & Zuniga-Garcia, N

2020 Austin, TX SAVs have the potential to help solve 
First-Mile-Last-Mile transit problems 
when fare benefits are provided to transit 
users.
Restricting SAVs use for FMLM trips 
increases transit coverage, lowers aver-
age access and egress walking distance, 
and shifts demand away from park-and-
ride and long walk trips.
When SAVs are available for both door-
to-door use and FMLM trips, high SAVs 
fares help maintain transit demand.

66 Zhang, W., & Wang, K 2020 Atlanta, GA Transition scenarios from year 2020–2040 
suggest the parking demand may be 
significantly reduced in the future.
Market penetration of car-sharing rather 
than vehicle automation is the key 
to parking demand reduction.
The reduction rate in parking space 
during the transition period increases 
from 6.5% in 2020 to 34.9% in 2040.
Spatial shifts in parking demand are 
also observed.

67 Alisoltani, N., Zargayouna, M., & 
Leclercq, L

2020 Lyon, France The proposed multi-agent system is effi-
cient in terms of serving all the requests 
in a short time satisfying both passengers 
and providers objectives.

68 Vosooghi, R., Puchinger, J., 
Bischoff, J., Jankovic, M., & Vouil-
lon, A

2020 Rouen Normandie, France Because of the lower service availabil-
ity due to going to charging stations 
and charging times along the day, 
the fleet usage ratio is decreased in all 
SAEV scenarios compared to the base-
case scenario.
By providing one normal charger 
per approximately four SAEVs, the per-
formance indicators become dramati-
cally worse in all scenarios compared 
to a non-electric SAVs service. How-
ever, after replacing normal chargers 
with rapid chargers and by increas-
ing the number of outlets of normal 
chargers, important improvements are 
observed.
The choice of charging and battery 
swapping station placement strategy 
is found to have a profound effect on ser-
vice performance indicators

69 Yan, H., Kockelman, K.M, & Guru-
murthy, K.M

2020 Minneapolis–Saint Paul, 
MN

The average SAVs in this region can 
serve at most 30 person-trips per day 
with less than 5 min average wait time, 
but generates 13% more VMT.
With dynamic ride-sharing, SAVs VMT fell, 
on average, by 17% and empty VMT fell 
by 26%.
Compared to idling-at-curb scenarios, 
parking restricted scenarios generated 
8% more VMT.
Relying on 52 mi/gallon hybrid electric 
SAVs, as opposed to a 31 mi/gallon 
conventional drivetrain SAVs, is estimated 
to lower travelers’ energy use by 21% 
and reduce tailpipe emissions by 30%
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70 Al Maghraoui, O., Vosooghi, R., 
Mourad, A., Kamel, J., Puchinger, 
J., Vallet, F., & Yannou, B

2020 Paris, France Estimating demand of SAVs ser-
vice, and relatively its configuration 
and design must take into account 
the demographic structure of the city/
region of and the taste variations of its 
inhabitants.
Introducing traveler profiles into the sys-
tem has the potential to enhance 
the quality of the service provided, as it 
can increase the overall satisfaction of VIP 
travelers, as well as having a positive 
effect on non-VIP travelers in terms 
of their detour and waiting times.

71 Lokhandwala, M., & Cai, H. (a) 2020 New York City, NY EV adoption in a traditional fleet requires 
charging infrastructure with fewer 
stations that each has more charging 
ports, compared to the future fleet (fully 
autonomous vehicles with ride sharing) 
which benefits from having more scat-
tered charging stations.
Charging will only reduce the service 
level by 2% for a future fleet with 100% 
EV adoption.
EV adoption can reduce CO2 emissions 
of NYC taxis by up to 861 Tones/day 
for the future fleet and 1100 Tones/day 
for the traditional fleet.

72 Zhang, T.Z., Chen, T.D 2020 Seattle metropolitan 
region, WA

In the absence of electricity price signals, 
SAEV charging demand is likely to peak 
the evening.
Under Smart Charging management, EVs 
with larger battery sizes are more respon-
sive to low-electricity cost charging 
opportunities and have greater potential 
to reduce total energy related costs 
for a SAEV fleet, especially under Real 
Time Pricing structure.

73 Lokhandwala, M., & Cai, H. (b) 2020 New York City, NY Higher service levels are reached 
when all of the riders in the system are 
open to pooling, with the majority will-
ing to accept non-pooled rides and a few 
(30%) unwilling to accept a non-pooled 
ride.
In order to achieve a higher system ser-
vice level, a small number of riders who 
accept only pooled rides is desired.
The most flexible rider type has relatively 
high service level, low waiting time, 
and the least variability in both service 
level and waiting time.
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74 Oh, S., Seshadri, R., Azevedo, C.L., 
Kumar, N., Basak, K., & Ben-Akiva, 
M.E

2020 Singapore In the case that total vehicle ownership 
is not capped, the introduction of AMoD 
leads to a significant increase in VKT 
of up to 17% in the case of moderate 
introduction and an increase in the ratio 
of congested to free travel time dur-
ing peak hours of up to 14%. The increase 
in network congestion can be mitigated 
by caps on vehicle ownership. The VKT 
increase is mitigated and decreases 
from 11% to 7.7% if total vehicle owner-
ship is fixed.
The fleet sizes required to serve AMoD 
demand in an island-wide rollout range 
from 27,500 to 43,200 in the moderate 
adoption scenario, in addition to an on-
demand and taxi fleet of around 20,000 
each.

75 Nahmias-Biran, B., Oke, J.B., 
Kumar, N., Lima Azevedo, C., & 
Ben-Akiva, M.E

2020 Singapore (virtual city) The city-wide deployment of AMoD 
results in greater accessibility and net-
work performance.
Mid and high-income individuals are 
gaining less accessibility as compared 
to low-income groups.

76 Venkatraman, P., & Levin, M 2021 Sioux Falls, SD Encouraging results in reducing the total 
person travel time for differing fleet sizes 
and demand levels. Reduction of Aver-
age Vehicle Travel Time and Average 
Person Travel Time.

77 Gurumurthy, K.M., Kockelman, 
K.M., & Auld, J

2021 Chicago, IL Service areas need a balanced mix of trip 
generators and attractors, and an SAVs 
fleet’s empty VMT can be noticeably 
reduced through suitable geofencing 
and DRS. Geofences can also help lower 
response times, reduce systemwide VMT 
across all modes, and ensure uniform 
access to SAVs.
DRS is most useful in lowering VMT 
and eVMT that arises from sprawled 
land development, but with insuf-
ficient demand to share rides, savings 
from the use of geofences is higher.

78 Chouaki, T. & Puchinger, J 2021 Paris-Saclay, France A mobility service that relies on AVs aided 
by connected road side units that allow 
to retrieve information about the traf-
fic would perform better than a regular 
service.
Introducing communications 
between the buses and the road side 
units (bus stops and traffic lights) allows 
a significant reduction in trip duration.

79 Zwick, F., Kuehnel, N., Moeckel, R., 
& Axhausen, K.W

2021 Munich, Germany Replacing all car trips by a stop-based 
ride-pooling system leads to a drastic 
noise reduction in residential areas, 
whereas door-to-door systems may even 
increase noise exposure due to additional 
pick-up/drop-off rides and detours.
Reduction in VKT with the pooling 
system observed.
Assuming that each private vehicle 
is on average used for 3 rides per day, 
more than 600,000 private vehicles are 
necessary to transport the same amount 
of rides as 12,000 stop-based ride-pool-
ing vehicles.
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80 Bucchiarone, A., De Sanctis, M., & 
Bencomo, N

2021 Trento, Italy Managing a considerable set of users 
sharing the same working place contrib-
utes to making the autonomous shuttles 
(AS) service less expensive and thus, 
more convenient for companies who 
may at the same time wish to offer 
it to their employees, at the expense 
of increase of waiting time.
When diversified working places are con-
sidered, travel costs are subject to a high 
variance that might discourage the use 
of a shared ride.
The waiting time for users served 
by the AS, decreases with the increasing 
size of the fleet.

81 Mo, B., Cao, Z., Zhang, H., Shen, Y., 
& Zhao, J

2021 Tampines, Singapore The competition can result in higher 
profits and higher system efficiency 
for both operators (AV & PT) compared 
to the status quo.
On average, the competition 
reduces the travel time of passen-
gers but increases their travel costs. 
Nonetheless, the generalized travel cost 
is reduced when incorporating the value 
of time.
The bus supply adjustment increases 
the average vehicle load and reduces 
the total VKT measured by the passen-
ger car equivalent, while the AV supply 
adjustment does the opposite.

82 Yao, F., Zhu, J., Yu, J., Chen, C., & 
Chen, X. (M.)

2020b Hangzhou, China A small proportion of AVs in the hybrid 
ride-hailing market can significantly 
reduce the average waiting time of pas-
sengers.
The average waiting time for passengers 
in human driving is longer than that of 
AVs by 1.9 min.
The total VKT for the fleet of AVs are 
smaller, and their exhaust emissions are 
12.3% fewer than those of the human 
driving fleet.

83 Kang, D., & Levin, M 2021 Sioux Falls, SD The maximum stable demand is linearly 
related to the fleet size given.
The max-pressure dispatch policy can 
serve as much demand as any other 
dispatch policy.

84 Javanshour, F., Dia, H., & Duncan, 
G

2022 Melbourne, Australia While AMoD can meet the demand 
for travel using only 16% of the current 
vehicle fleet, they would produce 77% 
increase in VKT.

85 Winter, K., Cats, O., Martens, K., & 
van Arem, B

2021 Amsterdam, Netherlands All pro-active relocation strategies are 
outperformed by a naïve remain-at-
drop off-location strategy in a scenario 
where curbside parking capacity 
is in abundance.
The demand-anticipation heuristic leads 
to the highest average waiting times due 
to vehicle bunching at demand-hotspots 
which results in an uneven usage of park-
ing facilities.
The most favourable results in regard 
to service efficiency and equity are 
achieved with the heuristics balanc-
ing demand and supply, at the costs 
of higher driven mileage due to the relo-
cation of idle vehicles.
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86 Zhang, W., & Guhathakurta, S 2021 Atlanta, GA All market segments are going to be 
less attached to their workplaces. The 
properties with preferred structural char-
acteristics, school districts, and neigh-
borhood features will become more 
appealing to home buyers. Therefore, 
the SAVs-induced reduction in trans-
portation cost provides more freedom 
for home buyers regarding where they 
may choose to live.
The model outputs suggest an increase 
in commute VMT generation across all 
market segments.

87 Ahadi, R., Ketter, W., Collins, J., & 
Daina, N

2021 Berlin, Germany Charging station locations depend 
mostly on the spatial distribution 
of installation costs and charging 
demands.
Optimal CSs are located in both central 
areas where demand is high, and sub-
urbs where installation costs are lower.
Charging strategies and fleet size affect 
the charging patterns, the required 
number of chargers and the fleet perfor-
mance.

88 Zhou, Y., Sato, H., & Yamamoto, T 2021 Kozoji, Japan In the case of a high-speed scenario, 
the same fleet size improved the level 
of service (LOS) by reducing the aver-
age wait time and halving the in-vehicle 
time. By contrast, the wait time in terms 
of the average and 95th percentile 
of the no-sharing ride scenario drastically 
deteriorated to an unacceptable level.
Preparing for the potential fleet 
insufficiency periods from 7:00–13:00 
and 15:00–18:00 can improve the LOS.

89 Zhou, M., Le, D., Nguyen-Phuoc, 
D.Q., Zegras, P.C., & Ferreira, J

2021 Singapore In the full automation scenario, an aver-
age decrease of 4.17 min is observed 
in accessibility and the median is a 0.65-
min decrease. Accessibility increases 
for 47.29% of the population and drops 
for 52.70% of them.
The female group experiences a small 
average increase in accessibility 
while the male group encounters 
an average decrease in accessibility.
Middle-age groups experience mod-
erately larger increase in accessibility 
and the increase for the oldest group 
is exceptionally small. Middle-age groups 
show the largest reduction in acces-
sibility in the full automation scenario 
when private modes become unavailable
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90 Oh, S., Lentzakis, A.F., Seshadri, R., 
& Ben-Akiva, M.E

2021 Singapore Introduction of AMoD services may 
potentially lead to increased vehicular 
traffic, resulting in heightened conges-
tion levels compared to the standard 
scenario.
Factors contributing to network 
congestion in AMoD scenarios include 
both demand patterns and operational 
requirements such as dead-heading 
and empty trips.
Vehicle accumulation and production 
increase by 8.7–14.5% and 5.6–8.8%, 
respectively, following the introduc-
tion of the AMoD service. Additionally, 
the total magnitude of hysteresis loops 
grows by more than 24% in these 
scenarios.
While the introduction of AMoD results 
in higher energy consumption (16.94–
24.33% increase from the baseline), vehi-
cle emissions in terms of NOx and PM 
are reduced by 4.3–5.7% and 5.6–8.2%, 
respectively.
The travel delay of IVTT for vehicles 
increases up to 23% in the AMoD sce-
nario with an increase in VKT.

91 Hörl, S., Becker, F., & Axhausen, 
K.W

2021 Zurich, Switzerland 4,000 AMoD vehicles lead to the maxi-
mum demand of around 150,000 
requests per day
Customers are willing to accept average 
waiting times of around 4 min at a price 
of 0.75 CHF/km

92 Ishibashi, Y., & Akiyama, E 2022 Tokyo, Japan Approximately 14%–32% of the popula-
tion would shift to SAVs, and those who 
traveled 2.0–8.0 km by rail or bicycle 
were likely to shift to SAVs.
If the total number of SAVs is increased 
too much, it is possible that people who 
used to walk or bicycle, will shift to SAVs.
It is important to limit the total number 
of SAVs to an appropriate amount 
from the perspectives of environmental 
impact and health impact.

93 Gurumurthy, K.M., & Kockelman, 
K.M

2022 Bloomington, IL Results reveal that greater pickup 
and drop off location (PUDO) spacing 
or distances between stops and higher 
levels of SAVs use or trip demand 
increase average vehicle occupancy 
and decrease SAVs VMT (by up to 27%) 
compared to door-to-door SAVs fleet 
operations without DRS or PUDOs.
At 0.25 mi PUDO spacings, travelers 
walked less than 5 min at either trip end.

94 Dean, M.D., Gurumurthy, K.M., 
de Souza, F., Auld, J., & Kockel-
man K.M

2022 Austin, TX On average, wait times were 39% lower, 
and average daily trips served per SAEV 
increased up to 28% compared to SAEV 
repositioning with heuristic charging. 
Coupling repositioning with charging 
decreased the fleet’s percent empty 
travel on average by 1.6%, relative 
to the scenario treating them as inde-
pendent events.
Sparser charging stations reduce invest-
ment costs.
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95 Wang, S., Correia, G.H., & Lin, H.X 2022 Hague, Netherlands Forming platoons could save up to 9.6% 
of the system-wide energy consump-
tion for the most efficient car model. 
Forming platoons reduces the travel 
times for travelers even if they experi-
ence delays while waiting for a platoon 
to be formed. Delays lead to longer travel 
times for the travelers with the platoon 
leaders, similar to what people experi-
ence while traveling in highly congested 
networks when platoon formation does 
not happen. The platoon delay increases 
as the volume of AMoD requests 
decreases; in the case of an AMoD sys-
tem serving only 20% of the commuter 
trips (by private cars in the case-study 
city), the average platoon delays experi-
enced by these trips increase by 25%.

96 Ben-Dor, G., Ogulenko, A., Klein, I., 
& Benenson, I

2022 Jerusalem, Israel In case of zero congestion/parking price, 
two-thirds of users of SAVs are former PT 
users.
In case of parking or congestion price, 
the PT/car split is half-half.

97 Stevens, M., Correia, G.H., Schel-
tes, A., & van Arem, B

2022 Rotterdam, the Nether-
lands

Relocation scenario: The required vehicle 
fleet to serve all the demand decreased 
by 6.45%, but led to an increase in total 
system driving distance of 28%.
Dynamic ride pooling: No change com-
pared to baseline scenario for required 
fleet. The average waiting time for a vehi-
cle to arrive increased by 42%.
Ride pooling & relocation: Compared 
to the base scenario, the ridepooling & 
relocation scenario can serve the same 
passenger demand requiring 10% fewer 
vehicles.
Fast charging scenario: all the demand 
can be served in the fast-charging 
scenario using 6% less vehicle fleet 
compared to the base scenario. Fast 
chargers also led to lower investment 
costs, because 20% fewer chargers are 
required.

98 Nahmias-Biran, B., Dadashev, G., 
& Levi, Y

2022 Tel Aviv, Israel While at the Base Case scenario MoD 
share was about 0.6% of total trips, 
with 30% reduction in fare the total share 
of AMoD services was about 1.8%, and it 
increases to 3.8% with 80% reduction 
in fare.
Only with 80% reduction in fare did 
the AMoD services become slightly more 
attractive than Car, and AMoD-pool travel 
costs became lower than Motorcycle 
costs but still higher than Bus costs.
In both single and shared AMoD services, 
the maximum number of trips obtained 
for trips between 10 and 20 km.
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